Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Supersymmetry, twistors, and the Yang-Mills equations


Author: Michael Eastwood
Journal: Trans. Amer. Math. Soc. 301 (1987), 615-635
MSC: Primary 32L25; Secondary 53C05, 53C80, 81E13
DOI: https://doi.org/10.1090/S0002-9947-1987-0882706-1
MathSciNet review: 882706
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article investigates a supersymmetric proof due to Witten of the twistor description of general Yang-Mills fields due to Green, Isenberg, and Yasskin. In particular, some rigor is added and the rather complicated calculations are given in detail.


References [Enhancements On Off] (What's this?)

  • [1] M. Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329-388. MR 536951 (80h:58002)
  • [2] N. P. Buchdahl, Analysis on analytic spaces and non-self-dual Yang-Mills fields, Trans. Amer. Math. Soc. 288 (1985), 431-469. MR 776387 (86k:32030)
  • [3] M. G. Eastwood, Ambitwistors, Twistor Newsletter 9 (1979), 55-58.
  • [4] M. G. Eastwood, R. Penrose, and R. O. Wells, Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), 305-351. MR 603497 (83d:81052)
  • [5] M. G. Eastwood, The generalized Penrose- Ward transform, Math. Proc. Cambridge Philos. Soc. 97 (1985), 165-187. MR 764506 (86f:32032)
  • [6] M. G. Eastwood and C. R. LeBrun, Thickenings and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192. MR 859775 (87j:32041)
  • [7] A. Ferber, Supertwistors and conformal supersymmetry, Nuclear Phys. B 132 (1978), 55-64. MR 0495851 (58:14492)
  • [8] G. Fischer, Complex analytic geometry, Lecture Notes in Math., vol. 538, Springer, Berlin, 1976. MR 0430286 (55:3291)
  • [9] P. S. Green, J. Isenberg, and P. B. Yasskin, Non-self-dual gauge fields, Phys. Lett. B 78 (1978), 462-464.
  • [10] P. S. Green, On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), 587-590. MR 660609 (83m:32013)
  • [11] J. Harnad, J. Hurtubise, M. Légaré, and S. Shnider, Constraint equations and field equations in supersymmetric $ N = 3$ Yang-Mills theory, Nuclear Phys. B 256 (1985), 609-620. MR 802589 (87c:81106)
  • [12] G. M. Henkin and Yu. I. Manin, Twistor description of classical Yang-Mills-Dirac fields, Phys. Lett. B 95 (1980), 405-408. MR 590021 (82f:81045)
  • [13] B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometric Methods in Mathematical Physics (Eds., K. Bleuler and A. Reetz), Lecture Notes in Math., vol. 570, Springer, Berlin, 1977, pp. 177-306. MR 0580292 (58:28326)
  • [14] Yu. I. Manin, Gauge fields and holomorphic geometry, J. Soviet Math. 21 (1983), 465-507.
  • [15] R. Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Ed., D. J. A. Welsh), Academic Press, London and New York, 1971, pp. 221-244. MR 0281657 (43:7372)
  • [16] -, Twistor theory, its aims and achievements, Quantum Gravity: An Oxford Symposium, Clarendon Press, Oxford, 1975, pp. 268-407.
  • [17] R. Penrose and R. S. Ward, Twistors for flat and curved space-time, General Relativity and Gravitation (Ed., A. Held), Vol. II, Plenum Press, New York and London, 1980, pp. 283-328. MR 617923 (82j:83001)
  • [18] R. Penrose and W. Rindler, Spinors and spacetime, Cambridge Univ. Press, 1984. MR 776784 (86h:83002)
  • [19] R. Pool, Yang-Mills fields and extension theory, Mem. Amer. Math. Soc. (to appear). MR 874083 (88b:32024)
  • [20] M. Roček, An introduction to superspace and supergravity, Superspace and Supergravity (Eds., S. W. Hawking and M. Roček), Cambridge Univ. Press, 1981, pp. 71-131.
  • [21] R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), 81-82. MR 0443823 (56:2186)
  • [22] R. O. Wells, Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 296-336. MR 520077 (80h:32001)
  • [23] -, Complex geometry in mathematical physics, Les Presses de l'Université de Montréal, 1982.
  • [24] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978), 394-398.
  • [25] B. G. Wybourne, Symmetry principles and atomic spectroscopy, Wiley-Interscience, New York, 1970. MR 0421392 (54:9396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32L25, 53C05, 53C80, 81E13

Retrieve articles in all journals with MSC: 32L25, 53C05, 53C80, 81E13


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0882706-1
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society