Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Scalar curvature functions in a conformal class of metrics and conformal transformations


Authors: Jean-Pierre Bourguignon and Jean-Pierre Ezin
Journal: Trans. Amer. Math. Soc. 301 (1987), 723-736
MSC: Primary 53C20; Secondary 58G30
MathSciNet review: 882712
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article addresses the problem of prescribing the scalar curvature in a conformal class. (For the standard conformal class on the $ 2$-sphere, this is usually referred to as the Nirenberg problem.) Thanks to the action of the conformal group, integrability conditions due to J. L. Kazdan and F. W. Warner are extended, and shown to be universal. A counterexample to a conjecture by J. L. Kazdan on the role of first spherical harmonics in these integrability conditions on the standard sphere is given. Using the action of the conformal groups, some existence results are also given.


References [Enhancements On Off] (What's this?)

  • [1] Thierry Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), no. 2, 148–174 (French, with English summary). MR 534672, 10.1016/0022-1236(79)90052-1
  • [2] Abbas Bahri and Jean-Michel Coron, Une théorie des points critiques à l’infini pour l’équation de Yamabe et le problème de Kazdan-Warner, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 15, 513–516 (French, with English summary). MR 792378
  • [3] J. P. Bourguignon, Invariants intégraux fonctionnels attachés à des équations aux dérivées partielles d'origine géométrique, Ecole Polytechnique, Palaiseau, 1985, preprint.
  • [4] W. X. Chen, A problem concerning the scalar curvature on $ {S^2}$, Academia Sinica, Beijing, 1986, preprint.
  • [5] José F. Escobar and Richard M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), no. 2, 243–254. MR 856845, 10.1007/BF01389071
  • [6] Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, 10.2307/1971103
  • [7] J. L. Kazdan, Gaussian and scalar curvature: an update, Seminar on Differential Geometry (S. T. Yau, ed.), Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 185-192.
  • [8] Jerry L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974), 14–47. MR 0343205
  • [9] Jerry L. Kazdan and F. W. Warner, Prescribing curvatures, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 309–319. MR 0394505
  • [10] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
  • [11] Jacqueline Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Coll. in–8^{∘} (2) 39 (1971), no. 5, 44 (French). MR 0322739
  • [12] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
  • [13] J. Moser, On a nonlinear problem in differential geometry, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 273–280. MR 0339258
  • [14] Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 0303464
  • [15] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
  • [16] R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, 10.2307/1971247
  • [17] Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20, 58G30

Retrieve articles in all journals with MSC: 53C20, 58G30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0882712-7
Article copyright: © Copyright 1987 American Mathematical Society