ON THE INVARIANCE OF q-CONVEXITY AND HYPERCONVEXITY UNDER FINITE HOLOMORPHIC SURJECTIONS

NGUYEN VAN KHUE AND LE VAN THANH

ABSTRACT. In this note we have proved that 0-convexity and hyperconvexity are invariant under finite holomorphic surjections. Invariance of cohomological q-convexity for the case of finite dimension also has been established.

It is known [7] that Steinness is invariant under finite holomorphic surjections. In this note we investigate the invariance property for 0-convexity generally, for cohomological completeness, for cohomological q-convexity of finite dimension, and for hyperconvexity.

1. The invariance of 0-convexity. We recall that a complex space X is called q-convex if there exists an exhaustion function φ on X which is strictly q-pseudoconvex outside some compact $K \subset X$. It is known [2] that X is 0-convex if and only if there exists a proper holomorphic map θ from X onto a Stein space S such that $\theta_* \mathcal{O}_X = \mathcal{O}_S$ and θ is biholomorphic outside some set of the form $\theta^{-1}A$, where A is a finite subset of S. The proper surjection $\theta: X \to S$ with S is Stein, such that $\theta_* \mathcal{O}_X = \mathcal{O}_S$ is said to be the Remmert reduction of X. By [2] if X is holomorphically convex then there exists a Remmert reduction. In this section we prove the following theorem.

1.1 THEOREM. Let $\varphi: X \to Y$ be a finite holomorphic surjective map. Then Y is 0-convex if and only if X is.

The proof of Theorem 1.1 is based on the following assertion, essentially as in [9].

1.2 ASSERTION. A complex space X is 0-convex if and only if $\dim H^1(X, \mathcal{S}) < \infty$ for every coherent ideal subsheaf $\mathcal{S} \subset \mathcal{O}_X$.

PROOF. The necessity follows from a theorem of Andreotti-Grauert [1].

Conversely, assume that $\dim H^1(X, \mathcal{S}) < \infty$ for every coherent ideal subsheaf \mathcal{S} of \mathcal{O}_X. We have to prove that X is 0-convex.

First we show that X is holomorphically convex. Let $V = \{x_n\}_{n=1}^\infty$ be a discrete sequence in X and let J_V denote the ideal subsheaf of \mathcal{O}_X associated to V. Consider the exact sequence:

\[
0 \to J_V \to \mathcal{O}_X \xrightarrow{\eta} \mathcal{O}_V \to 0.
\]

Received by the editors April 3, 1984 and, in revised form, May 6, 1985.

1980 Mathematics Subject Classification. Primary 32F10; Secondary 32H35.

©1987 American Mathematical Society

0002-9947/87 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

47
By hypothesis and by exactness of the cohomology sequence associated to (1) we get
\[(2) \dim \mathcal{O}(V)/\text{Im} \eta = \dim C^{\infty}/\text{Im} \eta < \infty.\]

Let \(l_{\infty}(V) \) denote the subspace of \(\mathcal{O}(V) \) consisting of bounded functions on \(V \). Then \(\dim C^{\infty}/l_{\infty}(V) = \infty \). Thus by (2) it follows that \(\text{Im} \eta \setminus l_{\infty}(V) \neq \emptyset \). This implies that \(\sup|f(x_n)| = \infty \) for some \(f \in \mathcal{O}(X) \). Hence \(X \) is holomorphically convex.

Let \(\theta: X \to S \) be the Remmert reduction of \(X \). To prove that \(X \) is 0-convex it suffices to show that \(\theta: X \setminus K \to S \setminus \theta(K) \) is injective for some compact set \(K \subset X \).

For a contradiction suppose there is a discrete set \(V = \{x_1, y_1, \ldots\} \) such that \(\theta(x_n) = \theta(y_n) \) for every \(n \geq 1 \). For each \(n \) let \(\sigma_n \in \mathcal{O}(V) \) be given by the formula
\[\sigma_n(x_n) = 1, \quad \sigma_n|V - x_n = 0.\]

Since \(\theta_* \mathcal{O}_X = \mathcal{O}_S \) it is easy to see that \(\{\sigma_n \mod \eta\} (n = 1, 2, \ldots) \) is linearly independent in \(\mathcal{O}(V)/\text{Im} \eta \). This contradicts (2). Hence Assertion 1.2 is proved.

1.3 Assertion. Let \(\theta: X \to Y \) be an \(n \)-analytic covering and let \(Y \) be normal.

Then for every coherent ideal subsheaf \(\mathcal{I} \) of \(\mathcal{O}_Y \) there exists a morphism \(Q: \theta_* \mathcal{O}_Y \to \mathcal{I} \) such that \(Q \circ \theta_* = \text{id} \), where \(e: \mathcal{O} \to \theta_* \mathcal{O}_Y \) is the canonical injection.

Proof. Let \(V \subset Y \) be the branch locus of \(\theta \) and let \(U \subset Y \) be a Stein open subset of \(Y \) on which there exists an exact sequence
\[(4) \quad \mathcal{O}_V \to \mathcal{O}_V \to \mathcal{I} \to 0.\]

Then the sequence
\[(5) \quad \theta_* \mathcal{O}_V \to \theta_* \mathcal{O}_V \to \mathcal{I} \to 0 \]

is also exact. Note that \(\theta_* \mathcal{O}_V^{\eta} = \mathcal{O}_\eta \) for every \(m \geq 1 \).

Consider \(\sigma \in H^0(U, \theta_* \mathcal{O}_Y) = H^0(\theta^{-1}(U), \mathcal{I}) \). Since \(\theta^{-1}(U) \) is Stein \([7]\) we can find \(\beta \in H^0(\theta^{-1}(U), \mathcal{I}) \) such that \(\tilde{\eta} \beta = \sigma \). Since \(Y \) is normal, the formula
\[P_U(\beta)(z) = (1/n) \sum_{j=1}^n \beta(x_j) \]

for \(z \in U \setminus V \) and \(\theta^{-1}(z) = \{x_1, x_2, \ldots, x_n\} \), defines an element \(P_U(\beta) \in \mathcal{O}_{\eta}(U) \). Put
\[(6) \quad Q_U(\sigma) = \eta P_U(\beta).\]

It is easy to see that \(Q_U(\sigma) \) is independent of choice of \(\beta \in H^0(\theta^{-1}(U), \mathcal{O}_\eta) \), \(\tilde{\eta} \beta = \sigma \), and \(Q_U(\sigma) = \sigma \) for all \(\sigma \in H^0(U, \mathcal{I}) \).

Assume now that
\[(7) \quad \mathcal{O}_V \to \mathcal{O}_V \to \mathcal{I} \to 0 \]

in another exact sequence on \(U \). Then there exists a commutative diagram:
\[
\begin{array}{cccccc}
\mathcal{O}_V & \to & \mathcal{O}_V & \to & \mathcal{I} & \to & 0 \\
\downarrow & & \downarrow & & \| & & \\
\mathcal{O}_V & \to & \mathcal{O}_V & \to & \mathcal{I} & \to & 0
\end{array}
\]

By the commutativity of (8) it follows that \(Q_U \) is independent of choice of presentation. Hence \(Q = \{Q_U\} \) defines a morphism \(Q: \theta_* \mathcal{O} \to \mathcal{I} \) such that \(Q \circ \theta_* = \text{id} \). Assertion 1.3 is proved.
Now we are able to prove Theorem 1.1. Assume that Y is 0-convex. Since φ is proper it follows that X is holomorphically convex. Considering the commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\varphi} & Y \\
\theta_X & \downarrow & \theta_Y \\
S_X & \xrightarrow{\tilde{\varphi}} & S_Y
\end{array}
$$

(9)

where θ_X and θ_Y are Remmert reductions of X and Y respectively, it is easy to see that θ_X is biholomorphic outside some compact set K in X. Hence X is 0-convex.

Conversely, assume that X is 0-convex. We prove that Y is also 0-convex.

(a) First we consider the case, where $\dim Y < \infty$.

We assume that the theorem has been proved for all complex spaces Y of dimension $< m$. Now assume that $\dim Y = m$. Consider the commutative diagram:

$$
\begin{array}{ccc}
(X \times Y \tilde{Y})_{\text{red}} & \xrightarrow{\tilde{\varphi}} & \tilde{Y} \\
\downarrow \eta & & \downarrow \nu \\
X & \xrightarrow{\varphi} & Y
\end{array}
$$

(10)

of finite holomorphic surjective maps, where \tilde{Y} is the normalization of Y. By the necessary condition already proved, $(X \times Y \tilde{Y})_{\text{red}}$ is 0-convex. On the other hand, since $\tilde{\varphi}$ is finite and \tilde{Y} normal it follows that $\tilde{\varphi}$ is a finite analytic n-covering for some n [4]. Thus by 1.2 and 1.3 we infer that \tilde{Y} is 0-convex. To prove that Y is 0-convex by 1.2 it suffices to show that $\dim H^1(Y, \mathcal{S}) < \infty$ for every coherent ideal subsheaf \mathcal{S} of \mathcal{O}_Y. Let \mathcal{O}_Y denote the coherent analytic sheaf of germs of weakly holomorphic functions on Y [4]. Put $\mathcal{D} = \mathcal{O}_Y : \mathcal{O}_Y$. Note that $\nu_*\mathcal{O}_Y = \mathcal{O}_Y$ and $\text{supp} \theta_Y/\mathcal{D} = N(Y)$ where $N(Y)$ denotes the nonnormal locus of Y. Let \mathcal{V} be the coherent ideal subsheaf of \mathcal{O}_Y which is the image of $\nu_*\mathcal{O}_Y = \nu^{-1}(\mathcal{D}\mathcal{O}_Y) \otimes (\mathcal{D}\mathcal{O}_Y) \otimes \mathcal{O}_Y$ under multiplication. By using the definition of \mathcal{D} it follows that $\nu_*\mathcal{V} \subset \mathcal{S}$ and since \tilde{Y} is 0-convex and ν is finite we have [4]

$$
\dim H^1(Y, \nu_*\mathcal{V}) = \dim H^1(\tilde{Y}, \mathcal{V}) < \infty.
$$

(11)

Since ν is biholomorphic outside $\nu^{-1}(N(Y))$ it follows that

$$
\text{supp} \mathcal{S}/\nu_*\mathcal{V} \subset N(Y).
$$

(12)

Thus, using the induction hypothesis we get

$$
\dim H^1(Y, \mathcal{S}/\nu_*\mathcal{V}) = \dim H^1(N(Y), \mathcal{S}/\nu_*\mathcal{V}) < \infty.
$$

(13)

By (11) and (13) and by the exactness of the cohomology sequence associated to the exact sequence

$$
0 \rightarrow \nu_*\mathcal{V} \rightarrow \mathcal{S} \rightarrow \mathcal{S}/\nu_*\mathcal{V} \rightarrow 0,
$$

we infer that $\dim H^1(Y, \mathcal{S}) < \infty$.

(b) In the general case, let $Y = \bigcup_{j=1}^{\infty} V_j$, where V is an irreducible branch of Y for any $j > 1$. Since $\tilde{Y} = \bigcup_{j=1}^{\infty} \tilde{V}_j$, by the 0-convexity of \tilde{Y} it is easy to see that there exists j_0 such that \tilde{V}_j is Stein for every $j > j_0$. Hence V_j is also Stein for every $j > j_0$.
Put

\[Y_0 = \bigcup_{j=1}^{j_0} V_j, \quad Y_k = Y_0 \cup \bigcup_{j=1}^{k} V_{j_0+j}. \]

By (a) \(Y_k \) is \(0 \)-convex for every \(k \geq 0 \).

If \(Y_0 \) is Stein then \(Y \) is Stein by [7]. Now we assume that \(Y_0 \) is \(0 \)-convex non-Stein. Thus \(Y_k \) is \(0 \)-convex non-Stein for every \(k \geq 0 \). Let \(\theta_k: Y_k \to S_k \) be the Remmert reduction of \(Y_k \). Then we have the following diagram:

\[
\begin{array}{cccccc}
Y_0 & \to & Y_1 & \to & Y_2 & \to & \cdots \\
\theta_0 & \downarrow & \theta_1 & \downarrow & \theta_2 & \downarrow & \cdots \\
S_0 & \to & S_1 & \to & S_2 & \to & \cdots \\
\end{array}
\]

Let \(A_k \) be a finite subset of \(S_k \) such that \(\theta_k: Y_k - \theta_k^{-1}(A_k) \to S_k - A_k \) is biholomorphic. Since \(Y_k \) non-Stein, \(\theta_k^{-1}(y) \) is connected of positive dimension for every \(y \in A_k \) [2]. Then, since \(\bigcup_{j>j_0} V_j \) is Stein, and \(\theta_k^{-1}(A_k) \) is compact connected of positive dimension, it follows that

\[\theta_k^{-1}(A_k) = \theta_0^{-1}(A_0) \text{ for every } k \geq 0. \]

(14)

From (14) it is easy to see that there exists \(k_0 \) such that

\[\tilde{\theta}_k \text{ is proper injective and } \theta_0^{-1}(A_0) \subseteq \text{Int}Y_k \text{ for every } k = k_0. \]

(15)

Put \(S = \lim \to S_k \) and \(\theta = \lim \to \theta_k: Y \to S \). By (14)(15) we infer that \(\theta \) is proper, \(\theta | Y \setminus \theta_0^{-1}(A_0) \) is biholomorphic, and \(\theta_* \mathcal{O}_Y = \mathcal{O}_S \). Moreover, since \(S = \lim \to \tilde{\theta}_k(S_k) \) where \(\tilde{\theta}_k(S_k) \) are Stein closed subspaces of \(S \), it follows that \(S \) is holomorphically separated and holomorphically convex and thereby \(S \) is Stein. Hence \(Y \) is \(0 \)-convex. This completes the proof of Theorem 1.1.

The following is an immediate consequence of Theorem 1.1.

1.4 Corollary. A complex space \(X \) is \(0 \)-convex if and only if all its irreducible branches, except for finitely many which are \(0 \)-convex, are Stein.

1.5 Corollary. Let \(\theta: X \to Y \) be a proper holomorphic surjective map which is finite outside a compact set. Then \(X \) is \(0 \)-convex if and only if \(Y \) is.

Proof. Assume that \(Y \) is \(0 \)-convex. Considering the commutative diagram (9) it is easy to see that \(\theta_X \) is finite outside a compact set. Hence by the Steinness of \(S_X \) we infer that \(X \) is \(0 \)-convex. Now assume that \(X \) is \(0 \)-convex. Consider the commutative diagram (16)

\[
\begin{array}{ccc}
X & \xrightarrow{\theta} & Y \\
\downarrow \theta_X & \nearrow \eta & \uparrow \theta' \\
S_X & \xleftarrow{\beta} & X' \\
\end{array}
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
in which X' is the Stein factorization of X for θ, and η, β are canonical maps and θ' is induced by θ. It is easy to check that θ' is finite, β is finite outside a compact set. This implies that X' is 0-convex. By Theorem 1.1 we infer that Y is 0-convex.

1.6 Corollary. Let $\theta: X \to Y$ be a proper holomorphic surjective map and X be 0-convex. Then Y is also 0-convex.

Proof. Considering the commutative diagrams (10) and (16) and by Theorem (1.1), without loss of generality we may assume that Y is normal. Hence Y is holomorphically convex. Consider the commutative diagram:

$$
\begin{array}{ccc}
X & \xrightarrow{\theta} & Y \\
\downarrow{\theta_X} & & \downarrow{\theta_Y} \\
S_X & \xrightarrow{\tilde{\theta}} & S_Y
\end{array}
$$

Since θ_X is finite outside a compact set, and $\tilde{\theta}$ is finite, it follows that θ_Y is finite outside a compact set. Hence Y is 0-convex.

1.7 Remark. Corollary (1.6) is not true for the holomorphically convex property [7].

2. The invariance of cohomological q-completness. A complex space X is called cohomologically q-complete (resp. cohomologically q-convex) if and only if $H^p(X, \mathcal{F}) = 0$ (resp. dim $H^p(X, \mathcal{F}) < \infty$) for every coherent ideal subsheaf \mathcal{F} of \mathcal{O}_X and for every $p > q$.

In this section we prove the following theorem.

2.1 Theorem. Let $\varphi: X \to Y$ be a finite holomorphic surjective map. Then X is cohomologically q-complete if and only if Y is. If, moreover, dim $X < \infty$ then X is cohomologically q-convex if and only if Y is.

Proof. Since φ is finite it follows that if Y is cohomologically q-complete (resp. cohomologically q-convex) then X is too.

As in the proof of Theorem 1.1(a) it follows that if dim $X < \infty$ and X is cohomologically q-complete (resp. cohomologically q-convex), then so is Y.

Thus to find the proof of the theorem it suffices to prove the following

2.2 Assertion. Let $X = \bigcup_{k=1}^{\infty} X_k$, X_k is the union of all irreducible branches of X of dimension $< k$. If X_k is cohomologically q-complete for every $k \geq 1$, then X is also cohomologically q-complete.

Proof. Let \mathcal{F} be a coherent ideal subsheaf of \mathcal{O}_X and $J_k = \mathcal{F}_{X_k}$ — the ideal subsheaf of \mathcal{O}_X associated to X_k. By $\eta_k: \mathcal{O}_X \to \tilde{\mathcal{O}}_{X_k}$ denotes the canonical map. Put $\mathcal{F}_k = \eta_k(\mathcal{F})$. Since any open set in X is contained in some X_k it follows that

$$
\mathcal{F} = \lim_{\leftarrow} \{ \mathcal{F}_k, \omega_k^j \},
$$

where $\omega_k^j: \mathcal{F}_k \to \mathcal{F}_j$ is a canonical map.

Let \mathcal{U} be a Stein open covering of X. By hypothesis we have

$$
H^p(\mathcal{U}, \mathcal{F}_k) = H^p(X, \mathcal{F}_k) = H^p(X_k, \mathcal{F}_k) = 0
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for every $p > q$ and so

\[(18) \quad \text{Im}\{H^{p-1}(\mathcal{U}, \mathcal{S}_{k+1}) \to H^{p-1}(\mathcal{U}, \mathcal{S}_k)\} = H^{p-1}(\mathcal{U}, \mathcal{S}_k)\]

for every $p > q$ and $k \geq 1$.

Consider $\sigma \in Z^p(\mathcal{U}, \mathcal{S}_k)$, $p > q$. By (17) for each $k \geq 1$ we find $\beta_k \in C^{p-1}(\mathcal{U}, \mathcal{S}_k)$ such that $\delta^{p-1}\beta_k = \eta\sigma$. Put $\beta_1 = \beta'_1$ and consider $\omega^1 \beta'_2 - \beta_1$. Since $\delta^{p-1}(\omega^1 \beta'_2 - \beta_1) = 0$, by (18) with $k = 1$ we find $\beta''_2 \in Z^{p-1}(\mathcal{U}, \mathcal{S}_2)$ such that $\omega^1 (\beta''_2 - \beta'_2) + \beta_1 = \delta^{p-2} \gamma$ for some $\gamma \in C^{p-2}(\mathcal{U}, \mathcal{S}_2)$.

Since \mathcal{U} is a Stein open covering, there exists $\tilde{\gamma} \in C^{p-2}(\mathcal{U}, \mathcal{S}_2)$ such that $\omega^1 \tilde{\gamma} = \gamma$. Put

$$\beta_2 = -\beta''_2 + \beta'_2 + \delta^{p-2} \tilde{\gamma}.$$

Then $\delta^{p-1}\beta_2 = \eta_2 \sigma$ and $\omega^1 \beta_2 = \omega^1 (\beta'_2 - \beta''_2) + \omega^1 \delta^{p-1} \tilde{\gamma} = \omega^1 (\beta'_2 - \beta''_2) + \omega^1 \delta^{p-1} \omega^1 \tilde{\gamma} = \omega^1 (\beta'_2 - \beta''_2) + \beta_1 + \omega^1 (\beta''_2 - \beta'_2) = \beta_1$. Continuing this process we get a sequence $\{\beta_n\}$ such that for every $n \geq 1$:

$$\beta_n \in C^{p-1}(\mathcal{U}, \mathcal{S}_n), \quad \delta^{p-1}(\beta_n) = \eta_n(\sigma) \quad \text{and} \quad \omega^1_{n+1} \beta_{n+1} = \beta_n.$$

Thus $\beta = \{\beta_n\} \in C^{p-1}(\mathcal{U}, \mathcal{S})$ and $\delta^{p-1}\beta = \sigma$. Hence $H^{p}(X, \mathcal{S}) = 0$ and 2.2 is proved.

The following is an immediate consequence of Theorem 2.1.

2.3 Corollary. X is cohomologically q-complete if and only if every irreducible branch of X is.

3. The invariance of the hyperconvexity. We recall that a Stein space X is called hyperconvex (resp. strongly hyperconvex) if there exists a plurisubharmonic (resp. strictly plurisubharmonic) negative exhaustion function on X [8]. In this section the following theorem is proved.

3.1 Theorem. Let $\theta : X \to Y$ be a finite holomorphic surjective map of finite-dimensional complex spaces. Then:

(i) If Y is strongly hyperconvex having a strictly plurisubharmonic negative exhaustion C^2-function, then X is strongly hyperconvex.

(ii) If Y is irreducible and X is strongly hyperconvex having a strictly plurisubharmonic negative exhaustion C^2-function, then Y is strongly hyperconvex.

We need the following.

3.2 Lemma. If X is strongly hyperconvex and Y is normal, then so is Y.

Proof. Let ψ be a strictly plurisubharmonic negative exhaustion function of X. By the integer lemma [4] we infer that $\theta : X \to Y$ is an analytic covering. Thus we can define a function φ on Y by the formula

\[(19) \quad \varphi(y) = \text{Tr}_{\theta}(\psi)(y) = \sum_{\theta(x) = y} \psi(x)\]

(the points of $\theta^{-1}(y)$ being counted with the right multiplicity).
Since \(\psi < 0 \) it follows that \(\varphi \) is an exhaustion function. First we prove that \(\varphi \) is plurisubharmonic. By a theorem of Fornaess and Narasimham [5] it suffices to show that \(\varphi \sigma \) is subharmonic for any holomorphic map \(\sigma \) of unit disc \(D \subset C \) into \(Y \).

Given such a map \(\sigma: D \to Y \), consider the commutative diagram:

\[
\begin{array}{ccc}
(D \times Y \times X)_{\text{red}} & \xrightarrow{\hat{\theta}} & X \\
\downarrow \hat{\theta} & & \downarrow \theta \\
D & \to & Y
\end{array}
\]

in which \(\theta \) and \(\hat{\theta} \) are analytic coverings. It is easy to see that the branching order \(O_\theta(x) = O_\hat{\theta}(\sigma x) \) for any \(x \in (D \times X \times X)_{\text{red}} \). Thus \((\text{Tr}_{\hat{\theta}}(\psi)) \sigma = \text{Tr}_{\theta}(\psi \sigma) \). Hence it remains to show that \(\text{Tr}_{\theta}(\psi \sigma) \) is subharmonic. The problem is local on \(D \), whence, without loss of generality, we can assume that there exists an embedding \(e: (D \times X \times X)_{\text{red}} \to \mathbb{C}^n \) for some \(n \). Then we have the commutative diagram:

\[
\begin{array}{ccc}
(D \times Y \times X)_{\text{red}} & \xrightarrow{\hat{\theta} = (\bar{\theta}, e)} & D \times \mathbb{C}^n \\
\downarrow \hat{\theta} & & \downarrow \bar{\pi} \\
D & \to & D
\end{array}
\]

in which \(\bar{\pi} | A: A \to D, A = \hat{e}(D \times Y \times X)_{\text{red}} \), is an analytic covering. Since

\[
\text{Tr}_{\hat{\theta}}(\psi \sigma) \circ \hat{e}^{-1} | A = \text{Tr}_{\bar{\theta}}(\psi \circ \bar{\sigma} \circ \bar{e}^{-1} | A),
\]

the subharmonicity of \(\text{Tr}_{\hat{\theta}}(\psi \sigma) \) follows from a lemma of [5].

If \(\sigma \) is a \(C^2 \)-function on a neighborhood \(V \) of a point \(y_0 \in Y \) such that partial derivatives of order \(\leq 2 \) have sufficiently small absolute values, then \(\psi + \sigma \theta \) is plurisubharmonic. Since \(\text{Tr}_{\theta}(\psi) + \sigma = \text{Tr}_{\hat{\theta}}(\psi + \sigma \theta) \) we infer that \(\text{Tr}_{\hat{\theta}}(\psi) + \sigma \) is plurisubharmonic. Thus \(\text{Tr}_{\hat{\theta}}(\psi) \) is strictly plurisubharmonic by definition. The lemma is proved.

3.3 Lemma. If \(Y \) is irreducible and \(\tilde{Y} \) is strongly hyperconvex, then so is \(Y \).

Proof. Since \(Y \) is irreducible, the normalization map \(\nu: \tilde{Y} \to Y \) is homeomorphic. Thus \(\psi \circ \nu^{-1} \) is a continuous negative exhaustion function on \(Y \), where \(\psi \) is that function on \(Y \). Since for every holomorphic map \(\sigma: D \to Y \) the map \(\nu^{-1} \sigma \) is holomorphic, as in the proof of the Lemma 3.2 we infer that \(\psi \nu^{-1} \) is strictly plurisubharmonic. Hence \(Y \) is strongly hyperconvex.

Proof of Theorem 3.1. (i) Let \(\varphi \) be a strictly plurisubharmonic negative exhaustion \(C^2 \)-function on \(Y \). We can assume that \(Y \) is embedded in \(\mathbb{C}^n \) for some \(n \). It is known [6] that there exists a relatively compact Stein open covering \(\{U_j\} \) of \(\mathbb{C}^n \) of finite order and a \(C^\infty \)-partition \(\{\rho_j\} \) of unity subordinate to \(\{U_j\} \) such that \(|D^\alpha \rho_j(x)| \leq C_\alpha \) for all \(\alpha \) and all \(j \). Since \(\theta^{-1}(U_j) \) is a relatively compact Stein open set, we may find a strictly plurisubharmonic nonnegative \(\psi_j \) \(C^\infty \)-function on \(\theta^{-1}(U_j) \). We set

\[
\psi(x) = \sum_j \rho_j(\theta x) \psi_j(x) + \varphi(\theta x).
\]
By calculating $\partial^2 \psi / \partial z \partial \bar{z}$ (in the local coordinate of X) we conclude that in choosing ψ_j such that the absolute values of their partial derivatives of order ≤ 2 is sufficiently small, $\psi_j(x)$ is a strictly plurisubharmonic negative exhaustion function of X. Hence X is strongly hyperconvex.

(ii) Considering the commutative diagram:

$$(X \times Y \check{Y})_{\text{red}} \xrightarrow{\partial} \check{Y}$$

$$\check{v} \downarrow \quad \downarrow v$$

$$X \quad \check{\theta} \quad Y$$

of the finite surjective maps, by (i) and by Lemma 3.2 and 3.3 we get strong hyperconvexity of Y. The theorem is proved.

3.4 Remark. In [3] Diederich and Fornaess have proved that every Stein bounded domain in \mathbb{C}^n with C^2-boundary has a strictly plurisubharmonic negative exhaustion C^2-function.

References

Institut de Mathématiques, P. O. Box 631, Bo Ho, Hanoi, Vietnam