Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variations on Lusin's theorem


Authors: Jack B. Brown and Karel Prikry
Journal: Trans. Amer. Math. Soc. 302 (1987), 77-86
MSC: Primary 26A15; Secondary 28A20, 54C30
DOI: https://doi.org/10.1090/S0002-9947-1987-0887497-6
MathSciNet review: 887497
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a theorem about continuous restrictions of Marczewski measurable functions to large sets. This theorem is closely related to the theorem of Lusin about continuous restrictions of Lebesgue measurable functions to sets of positive measure and the theorem of Nikodym and Kuratowski about continuous restrictions of functions with the Baire property (in the wide sense) to residual sets. This theorem is used to establish Lusin-type theorems for universally measurable functions and functions which have the Baire property in the restricted sense. The theorems are shown (under assumption of the Continuum Hypothesis) to be "best possible" within a certain context.


References [Enhancements On Off] (What's this?)

  • [1] H. D. Block and B. Cargal, Arbitrary mappings, Proc. Amer. Math. Soc. 3 (1952), 937-941. MR 0052095 (14:572b)
  • [2] H. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 24 (1922), 113-128. MR 1501216
  • [3] E. Borel, Un théorème sur les ensembles measurables, C. R. Acad. Sci. Paris 137 (1903), 966-967.
  • [4] J. C. Bradford and C. Goffman, Metric spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 11 (1960), 667-670. MR 0146310 (26:3832)
  • [5] J. B. Brown, Metric spaces in which a strengthened form of Blumberg's theorem holds, Fund. Math. 71 (1971), 243-253. MR 0292024 (45:1112)
  • [6] -, Lusin density and Ceder's differentiable restrictions of arbitrary real functions, Fund. Math. 84 (1974), 35-45. MR 0335699 (49:479)
  • [7] -, A measure theoretic variant of Blumberg's theorem, Proc. Amer. Math. Soc. 66 (1977), 266-268. MR 0463377 (57:3329)
  • [8] -, Variations on Blumberg's theorem, Real Anal. Exchange 9 (1983/84), 123-137.
  • [9] -, Continuous restrictions of Marczewski measurable functions, Real Anal. Exchange 11 (1985/86), 64-71. MR 828480
  • [10] J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1982), 1-39. MR 657320 (84g:54021)
  • [11] J. G. Ceder, Some examples on continuous restrictions, Real Anal. Exchange 7 (1981/82), 155-162. MR 646647 (83e:26006)
  • [12] A. Emeryk, R. Frankiewicz and W. Kulpa, On functions having the Baire property, Bull. Acad. Polon. Math. 27 (1979), 489-491. MR 560185 (81f:54011a)
  • [13] R. Frankiewicz, On functions having the Baire property. II. Bull. Acad. Polon. Math. 30 (1982), 559-560. MR 718734 (85f:54056)
  • [14] E. Grzegorek, Solution of a problem of Banach on $ \sigma $-fields without continuous measures, Bull. Acad. Polon. Math. 28 (1980), 7-10. MR 616191 (82h:04005)
  • [15] -, On some results of Darst and Sierpinski concerning universal null and universally measurable sets, Bull. Acad. Polon. Math. 29 (1981), 1-4. MR 634120 (83b:28002)
  • [16] -, On sets always of the first category, Abstracta 7th Winter School on Abstract Analysis, Math. Inst., Czech. Acad. Sci., Praha, 1979, pp. 20-24.
  • [17] -, Symmetric $ \sigma $-fields of sets and universal null sets, Measure Theory (Oberwolfach, 1981), Lecture Notes in Math., vol. 935, Springer-Verlag, New York, 1982, pp. 101-109.
  • [18] -, Always of the first category sets, Proc. 12th Winter School on Abstract Analysis, Suppl. Rend. Circ. Mat. Palermo 6 (1984), 139-147. MR 782712
  • [19] E. Grzegorek and C. Ryll-Nardzewski, A remark on absolutely measurable sets, Bull. Acad. Polon. Math. 28 (1980), 229-232. MR 620193 (82f:54065)
  • [20] -, On universal null sets, Proc. Amer. Math. Soc. 81 (1981), 613-617. MR 601741 (82c:04001)
  • [21] C. Kuratowski, La propriété de Baire dans les espaces métriques, Fund. Math. 16 (1930), 390-394.
  • [22] C. Kuratowski and A. Mostowski, Set theory, with an introduction to descriptive set theory, North-Holland, Amsterdam and New York 1976. MR 0485384 (58:5230)
  • [23] H. Lebesgue, Sur une propriété des fonctions, C. R. Acad. Sci. Paris 137 (1903), 1228-1230.
  • [24] N. Lusin, Sur les propriétés des fonctions mesurables, Comp. Rend. Acad. Sci. Paris (1912), 1688-1690.
  • [25] E. Marczewski (Szpilrajn), Sur un classe de fonctions de M. Sierpinski et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
  • [26] A. Miller, Special subsets of the real line, Handbook of Set Theoretic Topology, (K. Kunen and J. Vaughn, Eds.), North-Holland, Amsterdam, 1984. MR 776624 (86i:54037)
  • [27] J. C. Morgan II, Measurability and the abstract Baire property, Rend. Circ. Mat. Palermo 34 (1985), 234-244. MR 814038 (87c:28007)
  • [28] O. Nikodym, Sur la condition de Baire, Bull. Acad. Polon. (1929), 591.
  • [29] W. Sierpinski, Sur un problème de M. Ruziewicz concernant les superpositions de fonctions jouissant de la propriété de Baire, Fund. Math. 24 (1935), 12-16.
  • [30] W. Sierpinski and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
  • [31] S. M. Srivastava, Selection theorems for $ {G_\delta }$-valued multifunctions, Trans. Amer. Math. Soc. 254 (1979), 283-293. MR 539919 (80g:54027)
  • [32] G. Vitali, Una proprietà delle funzioni misurabili, Reale Instituto Lombardo 38 (1905), 599-603.
  • [33] H. E. White, Topological spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454-462. MR 0341379 (49:6130)
  • [34] -, Topological spaces in which Blumberg's theorem holds. II, Illinois J. Math. 23 (1979), 464-468. MR 537801 (80m:54025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A15, 28A20, 54C30

Retrieve articles in all journals with MSC: 26A15, 28A20, 54C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0887497-6
Keywords: Lusin's theorem, Blumberg's theorem, Baire property, Marczewski measurable
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society