Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On certain $ 3$-generator Artin groups


Author: Craig C. Squier
Journal: Trans. Amer. Math. Soc. 302 (1987), 117-124
MSC: Primary 20F05; Secondary 20E06, 20F36
DOI: https://doi.org/10.1090/S0002-9947-1987-0887500-3
MathSciNet review: 887500
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the three $ 3$-generator Artin groups that correspond to the three sets $ \{ p,q,r\} $ of positive integer solutions of $ {p^{ - 1}} + {q^{ - 1}} + {r^{ - 1}} = 1$. In each case, we show that the Artin group is a free product with amalgamation or HNN extension involving finitely generated free groups and subgroups of finite index.


References [Enhancements On Off] (What's this?)

  • [1] M. Albar and D. L. Johnson, Circular braids, Arab Gulf J. Sci. Res. 2 (1984), 137-145. MR 762300 (86a:20041)
  • [2] K. I. Appel, On Artin groups and Coxeter groups of large type, Contributions to Group Theory, Contemp. Math., vol. 33, Providence, R. I., 1984, pp. 50-78. MR 767099 (86d:20036)
  • [3] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Éléments de Mathématique XXXIV, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [4] E. Brieskorn and K. Saito, Artin-gruppen und Coxeter-gruppen, Invent. Math. 17 (1972), 245-271. MR 0323910 (48:2263)
  • [5] R. C. Lyndon an P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977. MR 0577064 (58:28182)
  • [6] J.-P. Serre, Trees Springer-Verlag, Berlin, 1980. MR 607504 (82c:20083)
  • [7] J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968), 312-334. MR 0228573 (37:4153)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F05, 20E06, 20F36

Retrieve articles in all journals with MSC: 20F05, 20E06, 20F36


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0887500-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society