Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Periodic points and automorphisms of the shift


Authors: Mike Boyle and Wolfgang Krieger
Journal: Trans. Amer. Math. Soc. 302 (1987), 125-149
MSC: Primary 54H20; Secondary 28D05, 54H15
DOI: https://doi.org/10.1090/S0002-9947-1987-0887501-5
MathSciNet review: 887501
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The automorphism group of a topological Markov shift is studied by way of periodic points and unstable sets. A new invariant for automorphisms of dynamical systems, the gyration function, is used to characterize those automorphisms of finite subsystems of the full shift on $ n$ symbols which can be extended to a composition of involutions of the shift. It is found that for any automorphism $ U$ of a subshift of finite type $ S$, for all large integers $ M$ the map $ U{S^M}$ is a topological Markov shift whose unstable sets equal those of $ S$. This fact yields, by way of canonical measures and dimension groups, information about dynamical properties of $ U{S^k}$ such as the zeta function and entropy.


References [Enhancements On Off] (What's this?)

  • [1] V. M. Alekseev, Symbolic dynamics, Eleventh Mathematical School (Summer School, Kolomyva, 1973), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1976, pp. 5-120. (Russian) MR 0464317 (57:4249)
  • [2] R. Bowen, Topological entropy and Axiom A, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 23-42. MR 0262459 (41:7066)
  • [3] R. Bowen and O. E. Lanford, Zeta functions of restrictions of the shift transformation, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 43-50. MR 0271401 (42:6284)
  • [4] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math., vol. 527, Springer-Verlag, Berlin, 1976. MR 0457675 (56:15879)
  • [5] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 0231903 (38:229)
  • [6] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 0259881 (41:4510)
  • [7] W. Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), 239-250. MR 561973 (81m:28018)
  • [8] W. Parry and S. Tuncel, Classification problems in ergodic theory, London Math. Soc. Lecture Notes Series 67, Cambridge Univ. Press, 1982. MR 666871 (84g:28024)
  • [9] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153; Errata 99 (1974), 380-381. MR 0331436 (48:9769)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H20, 28D05, 54H15

Retrieve articles in all journals with MSC: 54H20, 28D05, 54H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0887501-5
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society