Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The set of continuous functions with everywhere convergent Fourier series


Authors: M. Ajtai and A. S. Kechris
Journal: Trans. Amer. Math. Soc. 302 (1987), 207-221
MSC: Primary 04A15; Secondary 26A21, 42A20
DOI: https://doi.org/10.1090/S0002-9947-1987-0887506-4
MathSciNet review: 887506
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the descriptive set theoretic properties of the class $ \operatorname{EC} $ of continuous functions with everywhere convergent Fourier series. It is shown that this set is a complete coanalytic set in $ C(T)$. A natural coanalytic rank function on $ \operatorname{EC} $ is studied that assigns to each $ f \in \operatorname{EC} $ a countable ordinal number, which measures the "complexity" of the convergence of the Fourier series of $ f$. It is shown that there exist functions in $ \operatorname{EC} $ (in fact even differentiable ones) which have arbitrarily large countable rank, so that this provides a proper hierarchy on $ \operatorname{EC} $ with $ {\omega _1}$ distinct levels.


References [Enhancements On Off] (What's this?)

  • [Ba] N. K. Bari, A treatise on trigonometric series, vols. I, II, Macmillan, New York, 1964. MR 0171116 (30:1347)
  • [Br] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer-Verlag, Berlin and New York, 1978. MR 507448 (80h:26002)
  • [Bu1] V. V. Buzdalin, Unbounded divergence of Fourier series of continuous functions, Math. Notes 7 (1970), 5-12. (English translation of Mat. Zametki 7 (1970), 7-18) MR 0262757 (41:7362)
  • [Bu2] -, Trigonometric Fourier series of continuous functions diverging on a given set, Math. USSR Sbornik 24 (1974), no. 1, 79-101. (English translation of Mat. Sb. 95(137) (1974), no. 1)
  • [C] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. MR 0199631 (33:7774)
  • [EHP] P. Erdös, F. Herzog and G. Piranian, Sets of divergence of Taylor series and of trigonometric series, Math. Scand. 2 (1954), 262-266. MR 0067224 (16:691d)
  • [GH] D. C. Gillespie and W. A. Hurewicz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), 527-543. MR 1501551
  • [Ka] Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. MR 0422992 (54:10976)
  • [Ke] A. S. Kechris, Sets of everywhere singular functions, Recursion Theory Week, H.-D. Ebbinghaus et al., ed., Lecture Notes in Math., vol. 1141, Springer-Verlag, Berlin and New York, 1985, pp. 233-244. MR 820783 (87d:04003)
  • [KW] A. S. Kechris and W. H. Woodin, Ranks for differentiable functions, Mathematika (to appear). MR 882498 (88d:03097)
  • [Ku] K. Kuratowski, Evaluation de la classe borélienne ou projective d'un ensemble de points a i'aide des symboles logiques, Fund. Math. 17 (1931), 249-272.
  • [M] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980. MR 561709 (82e:03002)
  • [Ma] R. D. Mauldin, The set of continuous nowhere differentiable functions, Pacific J. Math. 83 (1978), 199-205. MR 555048 (81g:46033)
  • [Maz] S. Mazurkiewicz, Über die Menge der differenzierbaven Functionen, Fund. Math. 27 (1936), 244-249..
  • [R] W. Rudin, Functional analysis, Tata McGraw-Hill, New Delhi, 1974. MR 1157815 (92k:46001)
  • [Sl] J. Sladkowska, Sur l'ensemble des points de divergence des series de Fourier des fonctions continues, Fund. Math. 49 (1961), 271-294. MR 0125397 (23:A2700)
  • [St] K. R. Stromberg, An introduction to classical real analysis, Wadsworth, Belmont, Calif., 1981. MR 604364 (82c:26002)
  • [Sz] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. MR 0227743 (37:3327)
  • [Za] A. Zalcwasser, Sur une proprieté du champes des fonctions continus, Studia Math. 2 (1930), 63-67.
  • [Ze] K. Zeller, Uber Konvergenzmengen von Fourierreihn, Arch. Math. 6 (1955), 335-340. MR 0069302 (16:1015h)
  • [Zy] A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 04A15, 26A21, 42A20

Retrieve articles in all journals with MSC: 04A15, 26A21, 42A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0887506-4
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society