Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Small zeros of quadratic forms over number fields

Author: Jeffrey D. Vaaler
Journal: Trans. Amer. Math. Soc. 302 (1987), 281-296
MSC: Primary 11E12
MathSciNet review: 887510
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a nontrivial quadratic form in $ N$ variables with coefficients in a number field $ k$ and let $ A$ be a $ K \times N$ matrix over $ k$. We show that if the simultaneous equations $ F({\mathbf{x}}) = 0$ and $ A{\mathbf{x}} = 0$ hold on a subspace $ \mathfrak{X}$ of dimension $ L$ and $ L$ is maximal, then such a subspace $ \mathfrak{X}$ can be found with the height of $ \mathfrak{X}$ relatively small. In particular, the height of $ \mathfrak{X}$ can be explicitly bounded by an expression depending on the height of $ F$ and the height of $ A$. We use methods from geometry of numbers over adèle spaces and local to global techniques which generalize recent work of H. P. Schlickewei.

References [Enhancements On Off] (What's this?)

  • [1] B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135-138. MR 0097355 (20:3824)
  • [2] E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32. MR 707346 (85g:11049a)
  • [3] J. W. S. Cassels, Bounds for the least solution of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262-264. MR 0069217 (16:1002c)
  • [4] J. H. H. Chalk, Linearly independent zeros of quadratic forms over number fields, Monatsh. Math. 90 (1980), 13-25. MR 593828 (82c:10041)
  • [5] P. Gordan, Über den grössten gemeinsamen Factor, Math. Ann. 7 (1873), 443-448.
  • [6] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, vol. 1, Cambridge Univ. Press, 1968.
  • [7] S. Raghavan, Bounds of minimal solutions of diophantine equations, Nachr. Akad. Wiss. Gottingen, Math. Phys. Kl. 9 (1975), 109-114. MR 0485681 (58:5504)
  • [8] H. P. Schlickewei, Kleine Nullstellen homogener quadratischer Gleichungen, Monatsh. Math. 100 (1985), 35-45. MR 807296 (87f:11019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11E12

Retrieve articles in all journals with MSC: 11E12

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society