Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Splitting of closed ideals in $ ({\rm DFN})$-algebras of entire functions and the property $ ({\rm DN})$

Authors: Reinhold Meise and B. Alan Taylor
Journal: Trans. Amer. Math. Soc. 302 (1987), 341-370
MSC: Primary 32E25; Secondary 32A15, 46J20
MathSciNet review: 887514
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a plurisubharmonic weight function $ p$ on $ {{\mathbf{C}}^n}$ let $ {A_p}({{\mathbf{C}}^n})$ denote the (DFN)-algebra of all entire functions on $ {{\mathbf{C}}^n}$ which do not grow faster than a power of $ \exp (p)$. We prove that the splitting of many finitely generated closed ideals of a certain type in $ {A_p}({{\mathbf{C}}^n})$, the splitting of a weighted $ \overline \partial $-complex related with $ p$, and the linear topological invariant (DN) of the strong dual of $ {A_p}({{\mathbf{C}}^n})$ are equivalent. Moreover, we show that these equivalences can be characterized by convexity properties of $ p$, phrased in terms of greatest plurisubharmonic minorants. For radial weight functions $ p$, this characterization reduces to a covexity property of the inverse of $ p$. Using these criteria, we present a wide range of examples of weights $ p$ for which the equivalences stated above hold and also where they fail.

References [Enhancements On Off] (What's this?)

  • [1] Eric Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR 0445006
  • [2] Eric Bedford and B. A. Taylor, Variational properties of the complex Monge-Ampère equation. II. Intrinsic norms, Amer. J. Math. 101 (1979), no. 5, 1131–1166. MR 546307, 10.2307/2374130
  • [3] -, The complex equilibrium measure of a symmetric convex set in $ {{\mathbf{R}}^n}$, preprint.
  • [4] Carlos A. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Adv. in Math. 33 (1979), no. 2, 109–143. MR 544846, 10.1016/S0001-8708(79)80002-X
  • [5] C. A. Berenstein and B. A. Taylor, Interpolation problems in 𝐶ⁿ with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188–254. MR 600786
  • [6] Carlos A. Berenstein and B. A. Taylor, On the geometry of interpolating varieties, Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, and Colloquium at Wimereux, May 1981, Lecture Notes in Math., vol. 919, Springer, Berlin-New York, 1982, pp. 1–25. MR 658877
  • [7] D. K. Cohoon, Nonexistence of a continuous right inverse for linear partial differential operators with constant coefficients, Math. Scand. 29 (1971), 337–342 (1972). MR 0317111
  • [8] P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, Studia Math. 68 (1980), no. 1, 87–104. MR 583404
  • [9] Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. MR 0285849
  • [10] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), 140 (French). MR 0075539
  • [11] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1967.
  • [12] Lars Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943–949. MR 0226387, 10.1090/S0002-9904-1967-11860-3
  • [13] James J. Kelleher and B. A. Taylor, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math. 255 (1972), 190–209. MR 0306925
  • [14] James J. Kelleher and B. A. Taylor, Finitely generated ideals in rings of analytic functions, Math. Ann. 193 (1971), 225–237. MR 0302934
  • [15] B. J. Lewin, Nullstellenverteilung ganzer Funktionen, In deutscher Sprache herausgegeben von R. Dolinsky. Mathematische Lehrbücher und Monographien, II. Abt., Bd. XIV, Akademie-Verlag, Berlin, 1962 (German). MR 0150301
  • [16] Magnus Lundin, The extremal PSH for the complement of convex, symmetric subsets of 𝑅^{𝑁}, Michigan Math. J. 32 (1985), no. 2, 197–201. MR 783573, 10.1307/mmj/1029003186
  • [17] Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 271–355 (French). MR 0086990
  • [18] Reinhold Meise, Räume holomorpher Vektorfunktionen mit Wachstumsbedingungen und topologische Tensorprodukte, Math. Ann. 199 (1972), 293–312 (German). MR 0341046
  • [19] Reinhold Meise, Sequence space representations for (𝐷𝐹𝑁)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59–95. MR 814015, 10.1515/crll.1985.363.59
  • [20] Reinhold Meise and B. Alan Taylor, Opérateurs linéaires continus d’extension pour les fonctions ultradifférentiables sur des intervalles compacts, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 6, 219–222 (French, with English summary). MR 832048
  • [21] -, Each nonzero convolution operator on the entire functions admits a continuous linear right inverse, preprint.
  • [22] Reinhold Meise and Dietmar Vogt, Characterization of convolution operators on spaces of 𝐶^{∞}-functions admitting a continuous linear right inverse, Math. Ann. 279 (1987), no. 1, 141–155. MR 912843, 10.1007/BF01456196
  • [23] V. P. Palamodov, Linear differential operators with constant coefficients, Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970. MR 0264197
  • [24] Helmut H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR 0342978
  • [25] Laurent Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), 857–929 (French). MR 0023948
  • [26] B. A. Taylor, Some locally convex spaces of entire functions, Proc. Sympos. Pure Math., vol. 11, Amer. Math. Soc., Providence, R. I., 1968, pp. 431-467.
  • [27] B. A. Taylor, Linear extension operators for entire functions, Michigan Math. J. 29 (1982), no. 2, 185–197. MR 654479
  • [28] François Trèves, Locally convex spaces and linear partial differential equations, Die Grundlehren der mathematischen Wissenschaften, Band 146, Springer-Verlag New York, Inc., New York, 1967. MR 0223939
  • [29] Dietmar Vogt, Charakterisierung der Unterräume von 𝑠, Math. Z. 155 (1977), no. 2, 109–117. MR 0463885
  • [30] Dietmar Vogt, Subspaces and quotient spaces of (𝑠), Functional analysis: surveys and recent results (Proc. Conf., Paderborn, 1976) North-Holland, Amsterdam, 1977, pp. 167–187. North-Holland Math. Studies, Vol. 27; Notas de Mat., No. 63. MR 0625306
  • [31] Dietmar Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182–200 (German). MR 717893, 10.1515/crll.1983.345.182
  • [32] Dietmar Vogt, Sequence space representations of spaces of test functions and distributions, Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979) Lecture Notes in Pure and Appl. Math., vol. 83, Dekker, New York, 1983, pp. 405–443. MR 688001
  • [33] -, On the solvability of $ P(D)f = g$ for vector valued functions, RIMS Kokyoroku 508 (1983), 168-182.
  • [34] Dietmar Vogt and Max Josef Wagner, Charakterisierung der Quotientenräume von 𝑠 und eine Vermutung von Martineau, Studia Math. 67 (1980), no. 3, 225–240 (German, with English summary). MR 592388
  • [35] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148. MR 0227465

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32E25, 32A15, 46J20

Retrieve articles in all journals with MSC: 32E25, 32A15, 46J20

Additional Information

Keywords: Algebras of entire functions, slowly decreasing ideals, $ \overline \partial $-operator, structure theory of nuclear Fréchet spaces, linear extension operators, continuous linear right inverse
Article copyright: © Copyright 1987 American Mathematical Society