Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Graded Lie algebras of the second kind

Author: Jih Hsin Chêng
Journal: Trans. Amer. Math. Soc. 302 (1987), 467-488
MSC: Primary 17B70; Secondary 32F25, 53C35
MathSciNet review: 891630
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The associated Lie algebra of the Cartan connection for an abstract CR-hypersurface admits a gradation of the second kind. In this article, we give two ways to characterize this kind of graded Lie algebras, namely, geometric characterization in terms of symmetric spaces and algebraic characterization in terms of root systems. A complete list of this class of Lie algebras is given.

References [Enhancements On Off] (What's this?)

  • [Ca] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes. I, II, Oeuvres II, 2, pp. 1231-1304; ibid. III, 2, pp. 1217-1238.
  • [CM] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 0425155 (54:13112)
  • [H] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978. MR 514561 (80k:53081)
  • [Hu] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., vol. 9, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)
  • [KN] S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875-908. MR 0168704 (29:5961)
  • [L] O. Loos, Symmetric spaces. II, Benjamin, New York. 1969.
  • [T1] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $ n$ complex variables, J. Math. Soc. Japan 14 (1962), 397-429. MR26#3086. MR 0145555 (26:3086)
  • [T2] -, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. 2 (1976), 131-190. MR 0589931 (58:28645)
  • [W] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047. MR 0185554 (32:3020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B70, 32F25, 53C35

Retrieve articles in all journals with MSC: 17B70, 32F25, 53C35

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society