The topology of resolution towers
Authors:
Selman Akbulut and Henry King
Journal:
Trans. Amer. Math. Soc. 302 (1987), 497-521
MSC:
Primary 57R90; Secondary 14F45, 14G30
DOI:
https://doi.org/10.1090/S0002-9947-1987-0891632-3
MathSciNet review:
891632
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: An obstruction theory is given to determine when a space has a resolution tower. This can be used to decide whether or not the space is homeomorphic to a real algebraic set.
- [AK
] S. Akbulut and H. King, The topology of real algebraic sets, L'Enseignement Math. 29 (1983), 221-261. MR 719311 (86d:14016b)
- [AK
] -, Resolution tower.
- [AK
] -, Resolution towers on real algebraic sets.
- [AK
] -, Algebraic structures on resolution towers.
- [AK
] -, The topological classification of
-dimensional real algebraic sets.
- [AK
] -, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), 425-446. MR 621011 (83b:58003)
- [AK
] -, Submanifolds and homology of nonsingular algebraic varieties, Amer. J. Math. (1985), 45-83.
- [AK
] -, Real algebraic structures on topological spaces, Publ. Math. Inst. Hautes Etudes Sci. 53 (1981), 79-162. MR 623536 (83h:58009)
- [AT] S. Akbulut and L. Taylor, A topological resolution theorem, Publ. Math. Inst. Hautes Etudes Sci. 53 (1981), 163-195. MR 623537 (83e:57015)
- [D] D. Sullivan, Singularities in spaces, Proc. Liverpool Singularities II, Lectures Notes in Math., vol. 209, Springer-Verlag, Berlin and New York, 1971, pp. 196-206. MR 0339241 (49:4002)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R90, 14F45, 14G30
Retrieve articles in all journals with MSC: 57R90, 14F45, 14G30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0891632-3
Keywords:
Stratified,
resolutions
Article copyright:
© Copyright 1987
American Mathematical Society