Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Stickelberger ideal and the relative class number


Authors: Tatsuo Kimura and Kuniaki Horie
Journal: Trans. Amer. Math. Soc. 302 (1987), 727-739
MSC: Primary 11R18; Secondary 11R29
DOI: https://doi.org/10.1090/S0002-9947-1987-0891643-8
MathSciNet review: 891643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be any imaginary abelian field, $ R$ the integral group ring of $ G = {\text{Gal}}(k/\mathbb{Q})$, and $ S$ the Stickelberger ideal of $ k$. Roughly speaking, the relative class number $ {h^ - }$ of $ k$ is expressed as the index of $ S$ in a certain ideal $ A$ of $ R$ described by means of $ G$ and the complex conjugation of $ k;{c^ - }{h^ - } = [A:S]$, with a rational number $ {c^ - }$ in $ \frac{1} {2}\mathbb{N} = \{ n/2;n \in \mathbb{N}\} $, which can be described without $ {h^ - }$ and is of lower than $ {h^ - }$ if the conductor of $ k$ is sufficiently large (cf. [6, 9, 10]; see also [5]). We shall prove that $ 2{c^ - }$, a natural number, divides $ 2{([k:\mathbb{Q}]/2)^{[k:\mathbb{Q}]/2}}$. In particular, if $ k$ varies through a sequence of imaginary abelian fields of degrees bounded, then $ {c^ - }$ takes only a finite number of values. On the other hand, it will be shown that $ {c^ - }$ can take any value in $ \frac{1} {2}\mathbb{N}$ when $ k$ ranges over all imaginary abelian fields. In this connection, we shall also make a simple remark on the divisibility for the relative class number of cyclotomic fields.


References [Enhancements On Off] (What's this?)

  • [1] G. Cornell, Abhyankar's lemma and the class group, Number Theory (Carbondale 1979), edited by M. Nathanson, Lecture Notes in Math., vol. 751, Springer, 1979, pp. 82-88. MR 564924 (82c:12007)
  • [2] G. Cornell and L. C. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), 260-274. MR 814005 (87d:11079)
  • [3] F. Gerth III, Asymptotic results for class number divisibility in cyclotomic fields, Canad. Math. Bull. 26 (1983), 464-472. MR 716587 (84j:12006)
  • [4] H. Hasse, Über die Klassenzahl abelscher Zahlkàrper, Akademie-Verlag, Berlin, 1952. MR 0049239 (14:141a)
  • [5] K. Horie, On the index of the Stickelberger ideal and the cyclotomic regulator, J. Number Theory 20 (1985), 238-253. MR 790784 (86j:11111)
  • [6] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. 76 (1962), 171-179. MR 0154862 (27:4806)
  • [7] T. Kimura and K. Horie, On the Stickelberger ideal and the relative class number, Proc. Japan Acad. 58A (1982), 170-171. MR 664565 (83f:12006)
  • [8] J. Masley and H. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. MR 0429824 (55:2834)
  • [9] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134. MR 0485778 (58:5585)
  • [10] -, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. MR 595586 (82i:12004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R18, 11R29

Retrieve articles in all journals with MSC: 11R18, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0891643-8
Keywords: (Imaginary) abelian field, Stickelberger ideal, relative class number, analytic class number formula
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society