CHARACTER TABLE AND BLOCKS OF FINITE SIMPLE TRIALITY GROUPS $3D_4(q)$

D. I. DERIZIOTIS AND G. O. MICHLER

Abstract. Based on recent work of Spaltenstein [14] and the Deligne-Lusztig theory of irreducible characters of finite groups of Lie type, in this paper the character table of the finite simple groups $3D_4(q)$ is given. As an application we obtain a classification of the irreducible characters of $3D_4(q)$ into r-blocks for all primes $r > 0$. This enables us to verify Brauer’s height zero conjecture, his conjecture on the bound of irreducible characters belonging to a given block, and the Alperin-McKay conjecture for the simple triality groups $3D_4(q)$. It also follows that for every prime r there are blocks of defect zero in $3D_4(q)$.

Introduction. Let $G_o = 3D_4(q)$ be a simple triality group defined over a finite field GF(q) with $q = p^n$ elements, where $p > 0$ is a prime number and n is a positive integer.

In [14] N. Spaltenstein computed the values of the eight unipotent irreducible characters of G_o. Using his results we determine the character table of G_o in §4. In Theorem 4.3 the nonunipotent irreducible characters of G_o are presented in the form of precise linear combinations of the virtual Deligne-Lusztig characters $R_{T,\Theta}$, where Θ is a linear character of the σ-fixed points of a σ-stable maximal torus T of the corresponding algebraic group G. The values of the Deligne-Lusztig characters are given in Table 3.6.

By Lusztig’s Jordan form of the irreducible characters of a finite group of Lie type [11] each irreducible character χ of G_o is of the form $\chi = \chi_{t,u}$, where t is a semisimple element of G_o and χ_u is a unipotent irreducible character of the centralizer $C_{G_o}(t)$ of t. The group theoretical structure of the centralizers $C_{G_o}(t)$ of the semisimple elements t of G_o is given in Proposition 2.2, and of the 7 (up to G_o-conjugacy) maximal tori T_i, $0 \leq i \leq 6$, in Proposition 1.2. It follows that $C_{G_o}(t)$ has at most three unipotent irreducible characters, namely the trivial 1, the Steinberg character S_t or a unipotent character of degree either $qs = q(q + 1)$ or $qs' = q(q - 1)$. If $t \neq 1$ is regular, we write χ_t instead of $\chi_{t,1}$, in all other cases $\chi_{t,1}$, χ_{t,S_t}, $\chi_{t,q}$, $\chi_{t,q'}$, or $\chi_{t,S_t,q}$, $\chi_{t,S_t,q'}$. A complete classification of the irreducible characters of G_o with their degrees is given in Table 4.4.

On the set of conjugacy classes of semisimple elements t of G_o one can define an equivalence relation as follows. Two such conjugacy classes t_{1}^σ and t_{2}^σ are equivalent if and only if their centralizers $C_{G_o}(t_1)$ and $C_{G_o}(t_2)$ are G_o-conjugate. If q is odd, there are 15 equivalence classes with representatives s_i, $1 \leq i \leq 15$, where $s_1 = 1$.

Received by the editors February 13, 1985 and, in revised form, June 16, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 20C20.

©1987 American Mathematical Society
0002-9947/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and $s_2 \neq 1$ is the unique conjugacy class of involutions of G_o. If q is even, the equivalence class of s_2 does not exist, and we have only 14 equivalence classes. Using the first author’s work on the Brauer complex [5] of G_o and the computer, we obtain in Table 4.4 the numbers of semisimple conjugacy classes of G_o belonging to a given equivalence class $[s_i]$, $1 \leq i \leq 15$. Applying then Proposition 2.2 and Spaltenstein’s characterization of the unipotent conjugacy classes of G_o [14], we can give in Proposition 2.3 a complete classification of all conjugacy classes of G_o. In particular, we show that the number $k(G_o)$ of all conjugacy classes of G_o is

$$k(G_o) = q^4 + q^3 + q^2 + q + 5,$$

if $2 | q$, and

$$k(G_o) = q^4 + q^3 + q^2 + q + 6,$$

if $2 \nmid q$.

By means of these results we determine in §5 the distribution of the irreducible characters of G_o into r-blocks, where r is a prime number dividing the group order $|G_o|$. If $r = p$, then by Humphrey’s theorem [10] G_o has only the principal p-block B_0 and a block B of defect zero consisting of the irreducible Steinberg character. For $r \neq p$ Theorem 5.9 asserts that each r-block B with defect group D determines, up to G_o-conjugacy, a unique semisimple r'-element s of G_o such that an irreducible character $\chi_{r,u}$ of G_o belongs to B if and only if t is G_o-conjugate to sy for some $y \in D$, and χ_u is an irreducible unipotent character of $C_{G_o}(sy)$ such that $sy\chi_u$ belongs to an r-block B of $C_{G_o}(sy)$ with defect group D satisfying $B = B^G$. This result can be considered to be an analogue of the Fong-Srinivasan characterization [8] of the r-blocks of the general linear and unitary groups.

In Corollary 5.11 we show that for all primes $r > 0$ and all r-blocks B of G_o with defect group $\delta(B) = G_o D$ the number of all irreducible characters of G_o belonging to B is bounded by $k(B) \leq |D|$. This verifies a well-known conjecture of R. Brauer, see [7], in the case of the simple triality groups. He also conjectured that an r-block B of a finite group G has only irreducible characters of height zero if and only if its defect group $\delta(B) = G D$ is abelian. In case $G = G_o$ this is shown for all primes r in Corollary 5.10.

Let $k_0(B)$ be the number of irreducible characters of an r-block B of G with height zero. If $\delta(B) = G D$ denotes the defect group of D, $H = N_G(D)$, and B_1 is the Brauer correspondent of B in H, then the Alperin-McKay conjecture asserts that $k_0(B) = k_0(B_1)$. In the case of $G = G_o$, we verify it for all primes r; see Corollary 5.12.

Another application of Table 4.4 yields that in G_o there are r-blocks B of defect zero for every prime $r > 0$; see Corollary 5.1.

Concerning the notation and terminology we refer to the books by Carter [2], Deriziotis [4], Feit [7], and Lusztig [11].

1. Notations and known results on $^3D_4(q)$. Let G be a simple simply connected algebraic group of Dynkin diagram type D_4 over the algebraic closure K of the prime field $GF(p) = F_p$, $p > 0$. Let $q = p^m$ for some positive integer m, and let $GF(q) = F_q$ be the field with q elements. F^* denotes the multiplicative group of every field F.

Let T be a maximal torus of G, Φ the set of roots of G relative to T, $Y = Hom(T, K^*)$ the group of rational characters of T, $Y = Hom(K^*, T)$ — the
group of one-parameter subgroups of T. On the real vector space $V = Y \otimes \mathbb{R}$ we have a Killing form (\cdot, \cdot) which is transferred to an inner product $\langle \cdot, \cdot \rangle$ on the dual space V^* of V which can canonically be identified with the real vector space $X \otimes \mathbb{R}$. If r is a root in Φ, the coroot of G associated to r is defined to be the element h_r of Y such that $\langle h_r, h \rangle = 2r(h)/\langle r, r \rangle$, for all $h \in Y$. In V there is an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ such that the coroots in Y are the vectors $\pm e_i \pm e_j$, $1 \leq i, j \leq 4$. We fix the fundamental basis $\Delta = \{r_1, r_2, r_3, r_4\}$ in Φ for which the associated coroots are $h_1 = e_1 - e_2$, $h_2 = e_2 - e_3$, $h_3 = e_3 - e_4$, and $h_4 = e_3 + e_4$, respectively.

Let τ be the symmetry of the Dynkin diagram D_4 of G with nodes h_1, h_2, h_3, and h_4 such that τ: $h_1 \rightarrow h_3 \rightarrow h_4 \rightarrow h_1$ and $\tau(h_2) = h_2$. Then τ induces an isometry on V which again is denoted by τ. The triality automorphism $\sigma = \tau q$ of G is induced by τ times the field automorphism $z \rightarrow z^q$ of K. The simple group $3D_4(q) = G_a = \{g \in G|\sigma(g) = g\}$ is called the Steinberg-Tits triality. Its order $|G_a| = q^{12}(q^8 + q^4 + 1)(q^6 - 1)(q^2 - 1)$.

The torus T is σ-stable. The restriction of $\sigma = q\tau$ onto T induces a linear transformation of V, again denoted by σ.

Let h: $\text{Hom}(X, K^*) \rightarrow T$ be defined as follows. For every $\chi \in \text{Hom}(X, K^*)$, $h(\chi) = t \in T$, where $\chi(\lambda) = \lambda(t)$ for all $\lambda \in X$. Then h is an isomorphism.

Let λ_1, λ_2, λ_3, and λ_4 be the fundamental weights in X. Each element $h(\chi) \in T$ can uniquely be written as

$$h(\chi) = \prod_{i=1}^{4} h(x_{h_i}, z_i),$$

where $x_{h_i}(\lambda) = z^{\lambda(h_i)}$ for $r \in \Phi$, $z \in K^*$, and where $\chi(\lambda_i) = z_i$ for $1 \leq i \leq 4$.

Let W be the Weyl group generated by all reflections w_r at the hyperplanes of V orthogonal to the coroots h_r, $r \in \Phi$. Then σ acts on W by $\sigma(w_r) = \sigma w_r \sigma^{-1} = \tau w_. \tau^{-1}$. In particular, $\sigma(w_r) = w_{\tau(r)}$. W acts also on T by $w \chi$, where $(w \chi)(\lambda) = \chi(w^{-1}(\lambda))$ for all $\lambda \in X$. Furthermore, $w_{\pm j}$ denotes the reflection at the hyperplane of V orthogonal to the coroot $e_i \pm e_j$.

Let r_0 be the highest root of Φ, and $\tilde{\Delta} = \Delta \cup \{-r_0\}$.

Let J be an arbitrary τ-invariant proper subset of $\tilde{\Delta}$, and W the Weyl group of the torus T. The normalizer of J in W is denoted by Ω_J. It is a σ-stable subgroup of W. Two elements w_1, $w_2 \in \Omega_J$ are called σ-equivalent if $w_1 = w w_2 \sigma(w^{-1})$ for some $w \in \Omega_J$. The σ-equivalence class of $w \in \Omega_J$ is denoted by $[w]$, and $H^1(\sigma, \Omega_J)$ is the set of all σ-equivalence classes $[w]$ of Ω_J. The possibilities of J and Ω_J are given in Table 1.0, up to W-conjugacy.

<table>
<thead>
<tr>
<th>J</th>
<th>Ω_J</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_0 = {r_1, r_2, r_3, r_4}$</td>
<td>$\Omega_{J_0} = 1$</td>
</tr>
<tr>
<td>$J_1 = {r_1, r_3, r_4, -r_0}$</td>
<td>$\Omega_{J_1} = \langle w_{1+4} w_{2+3} \rangle \times \langle w_{1-4} w_{1+4} \rangle \simeq (Z_2)^2$</td>
</tr>
<tr>
<td>$J_2 = {r_1, r_3, r_4}$</td>
<td>$\Omega_{J_2} = \langle w_{1+2} \rangle \simeq Z_2$</td>
</tr>
<tr>
<td>$J_3 = {r_2, -r_0}$</td>
<td>$\Omega_{J_3} = \langle w_{1-3} w_{2+4} w_{2-4} \rangle \simeq Z_2$</td>
</tr>
<tr>
<td>$J_4 = {-r_0}$</td>
<td>$\Omega_{J_4} = \langle w_{1-2} \rangle \times \langle w_{3-4} \rangle \times \langle w_{3+4} \rangle \simeq (Z_2)^3$</td>
</tr>
<tr>
<td>$J_5 = \emptyset$</td>
<td>$\Omega_{J_5} = W$</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \mathcal{C}_J be the collection of all σ-stable G-conjugates of $C_G(x)$ where x is a semisimple element of G with $r(x) = 1$ for all $r \in J$. Then the group G_σ acts on \mathcal{C}_J by conjugation. If $J = \emptyset$ is the empty set, then $G_\emptyset = W$, and x is a regular element of G. There is a one-to-one correspondence between the G_σ-orbits of σ-stable maximal tori of G and the classes of $H^1(\sigma, W)$, see [1, p. 186]. It is known for the triality $G_\sigma = D_4(q)$ that $|H^1(\sigma, W)| = 7$; cf. [14].

Let T be a σ-stable maximal torus of G, with Weyl group $W = N_G(T)/T$. If T' is a σ-stable maximal torus of G, then there is a unique class $[w_{J}] \in H^1(\sigma, W)$ with $j \in \{0, 1, \ldots, 6\}$ such that T'_J is G-conjugate to $T_j = T_{w_{J}\sigma} = \{t \in T | w_{J}\sigma(t) = t\}$.

In particular, the element $h(x) = \prod_{i=1}^4 h(x_{i}, z_i) \in T$ belongs to T_j if and only if

$$h(x) = w_J \sigma h(x) = \prod_{i=1}^4 h(x_{w_J\sigma}(z_i)),$$

For the sake of simplicity, each element $h(x) = \prod_{i=1}^4 h(x_{i}, z_i) \in T$ is denoted by

$$A(x) = \sum_{i=1}^4 A_i(x) = \prod_{i=1}^4 h(x_{i}, z_i).$$

For the sake of simplicity, each element $h(x) = \prod_{i=1}^4 h(x_{i}, z_i) \in T$ is denoted by

$$A(x) = (z_1, z_2, z_3, z_4).$$

With this notation we can parametrize all the elements of the tori T_j.

Lemma 1.1. Let $q \neq 2$. Let T' be a maximal σ-stable torus of G corresponding to the class $[w_{J}] \in H^1(\sigma, W)$, $j \in \{0, 1, \ldots, 6\}$, and let $T_j = T_{w_{J}\sigma}$. Then the Weyl group W_j of T_j is given by

$$W_j = C_{w_{J}\sigma}(w_{J}) = \{w \in W | w_{J\sigma}w = w_{J}\} \equiv N_G(T_j)/T_j.$$

Proposition 1.2 (P. C. Gager). The structure of the maximal tori T_j of G_σ and their Weyl groups W_j is given in Table 1.1.

<table>
<thead>
<tr>
<th>$[w_{J}] \in H^1(\sigma, W)$</th>
<th>T_j</th>
<th>W_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_0 = 1 \in W$</td>
<td>$T_0 = {(z_1, z_2, z_3, z_4)</td>
<td>z_1^{-1} = z_2^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_1 = w_1^{-1}$</td>
<td>$T_1 = {(z_1, z_3^{-q}, z_4^{-q}, z_2^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_2 = -w_{20}$</td>
<td>$T_2 = {(z_1, z_2, z_3^{-q}, z_4^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_3 = w_1^{-1}z_{2^{-1}}$</td>
<td>$T_3 = {(z_1, z_2, z_3^{-q}, z_4^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_4 = -w_1^{-1}z_{2^{-1}}$</td>
<td>$T_4 = {(z_1, z_2, z_3^{-q}, z_4^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_5 = w_1^{-1}z_{2^{-1}}$</td>
<td>$T_5 = {(z_1, z_2, z_3^{-q}, z_4^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
<tr>
<td>$w_6 = -1$</td>
<td>$T_6 = {(z_1, z_2, z_3^{-q}, z_4^{-q})</td>
<td>z_1^{q^{-1}}q^{-1} = 1}$</td>
</tr>
</tbody>
</table>

2. Structure of the centralizers of the semisimple elements and the determination of the conjugacy classes. For each $i \in \{0, 1, \ldots, 5\}$ let E_i denote the Dynkin diagram type of the root system Φ_{J_i} generated by J_i. Let \mathcal{C}_{J_i} be the collection of all σ-stable G-conjugates of $C_G(x)$, where x is an element of the maximal torus T of G. By
Corollary 3 of [3] there is a one-to-one correspondence between the G_a-orbits of \mathcal{C}_J and the classes of $H^1(\sigma, \Omega_J)$). Therefore each G_a-orbit of \mathcal{C}_J can be parametrized by a pair $(E_i, [w])$, where $[w] \in H^1(\sigma, \Omega_J)$.

Proposition 2.1. Let s_i be a representative of a semisimple conjugacy class $s_i^{G_a}$ of G_a whose centralizer $C_G(s_i)$ is in the orbit parametrized by the pair $(E_i, [w])$. Then the semisimple conjugacy classes are classified in Table 2.1.

<table>
<thead>
<tr>
<th>$(E_i, [w])$</th>
<th>s_i, q even</th>
<th>s_i, q odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(E_0, [1])$</td>
<td>$s_1 = (1,1,1,1)$</td>
<td>$s_1 = (1,1,1,1)$</td>
</tr>
<tr>
<td>$(E_1, [1])$</td>
<td>s_2</td>
<td>$s_2 = (t,1,1,1)$, $t^2 = 1, t \neq 1$</td>
</tr>
<tr>
<td>$(E_2, [1])$</td>
<td>$s_3 = (t,t^2,1,t)$, $t^{q-1} = 1, t \neq 1$</td>
<td>$s_3 = (t,t^2,1,t)$, $t^{q-1} = 1, t^2 \neq 1$</td>
</tr>
<tr>
<td>$(E_3, [1])$</td>
<td>$s_4 = (t,t^q,t^q)$, $t^{q^2+q+1} = 1, t \neq 1$</td>
<td>$s_4 = (t,t^q,t^q)$, $t^{q^2+q+1} = 1, t \neq 1$</td>
</tr>
<tr>
<td>$(E_4, [1])$</td>
<td>$s_5 = (t,t^q,t^q)$, $t^{q^2-1} = 1, t^{q^2+q-1} \neq 1$</td>
<td>$s_5 = (t,t^q,t^q)$, $t^{q^2-1} = 1, t^{q^2+q-1} \neq 1, t^2 \neq 1$</td>
</tr>
<tr>
<td>$(E_5, [1])$</td>
<td>$s_6 = (t_1,t_2,t_3,t_4)$, $t_1^{q^2-1} = 1, t_2 \neq 1, t_3^{q^2} \neq t_2$, $t_4^{q^2+q+1} \neq t_2$</td>
<td>$s_6 = (t_1,t_2,t_3,t_4)$, $t_1^{q^2-1} = 1, t_2 \neq 1, t_3^{q^2} \neq t_2$, $t_4^{q^2+q+1} \neq t_2$</td>
</tr>
<tr>
<td>$(E_6, [w_1+2])$</td>
<td>$s_7 = (t,t^q,t,t^q)$, $t^{q^2-1} = 1, t^2 \neq 1$</td>
<td>$s_7 = (t,t^2,t,t)$, $t^2 \neq 1, t^{q^2-1} = 1$</td>
</tr>
<tr>
<td>$(E_7, [w_1+2])$</td>
<td>$s_8 = (t,t^{q^2},t^{q^2})$, $t^{q^2(q^2-1)} = 1, t^{q^2-1} \neq 1 \neq t^{q^2}$</td>
<td>$s_8 = (t,t^{q^2},t^{q^2})$, $t^{q^2(q^2-1)} = 1, t^{q^2-1} \neq 1 \neq t^{q^2}$</td>
</tr>
<tr>
<td>$(E_8, [-w_1+2])$</td>
<td>$s_9 = (t,t^{q^2},t^{q^2})$, $t^{q^2-1} = 1, t^2 \neq 1$</td>
<td>$s_9 = (t,t^{q^2},t^{q^2})$, $t^{q^2-1} = 1, t^2 \neq 1$</td>
</tr>
<tr>
<td>$(E_9, [-w_1+2])$</td>
<td>$s_{10} = (t,t^{q^2},t^{q^2})$, $t^{q^2-1} = 1, t^2 \neq 1$</td>
<td>$s_{10} = (t,t^{q^2},t^{q^2})$, $t^{q^2-1} = 1, t^2 \neq 1$</td>
</tr>
<tr>
<td>$(E_{10}, [-w_1+2])$</td>
<td>$s_{11} = (t,t^{q^2+1},t^{q^2},t^{q^2})$, $t^{q^2(q^2-1)} = 1, t^{q^2-1} \neq 1 \neq t^{q^2}$</td>
<td>$s_{11} = (t,t^{q^2+1},t^{q^2},t^{q^2})$, $t^{q^2(q^2-1)} = 1, t^{q^2-1} \neq 1 \neq t^{q^2}$</td>
</tr>
<tr>
<td>$(E_{11}, [w_1+w_2-3])$</td>
<td>$s_{12} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2+1})$, $t_1^{q^2+q+1} = 1, t_1 \neq t_2$</td>
<td>$s_{12} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2+1})$, $t_1^{q^2+q+1} = 1, t_1 \neq t_2$</td>
</tr>
<tr>
<td>$(E_{12}, [-w_1+w_2-3])$</td>
<td>$s_{13} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2-1})$, $t_1^{q^2-1} = 1, t_1 \neq t_2$</td>
<td>$s_{13} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2-1})$, $t_1^{q^2-1} = 1, t_1 \neq t_2$</td>
</tr>
<tr>
<td>$(E_{13}, [w_1-w_2-3])$</td>
<td>$s_{14} = (t,t^{q^2+1},t^{q^2},t^{q^2})$, $t^{q^2+1} = 1, t \neq 1$</td>
<td>$s_{14} = (t,t^{q^2+1},t^{q^2},t^{q^2})$, $t^{q^2+1} = 1, t \neq 1$</td>
</tr>
<tr>
<td>$(E_{14}, [-1])$</td>
<td>$s_{15} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2})$, $t_1^{q^2+1} = 1, t_1 \neq t_2$, $t_2^{q^2+q+1} \neq 1$, $t_2 \neq t_3$, $t_3^{q^2+q+1} \neq 1$, $t_3 \neq t_4$, $t_4^{q^2+q+1} \neq 1$, $t_4 \neq t_1$</td>
<td>$s_{15} = (t_1,t_2,t_3,t_4,(t_1^{-1}t_2)^{q^2})$, $t_1^{q^2+1} = 1, t_1 \neq t_2$, $t_2^{q^2+q+1} \neq 1$, $t_2 \neq t_3$, $t_3^{q^2+q+1} \neq 1$, $t_3 \neq t_4$, $t_4^{q^2+q+1} \neq 1$, $t_4 \neq t_1$</td>
</tr>
</tbody>
</table>

Let $x \in G_a$ be semisimple contained in the maximal torus T of G. By Proposition 2.3.2 of [4] there is a proper subset J of Δ such that $C_G(x)$ is generated by T and the root subgroups $X_r, r \in J$.
Let \(M = \{ X_r \mid r \in J \} \) and let \(S \) be the connected component of the center of \(C_G(x) \). Then \(M \) is semisimple, \(S \) is a torus, \(C_G(x) = MS \) and \(M \cap S \) is finite. Moreover, the order

\[
|C_G(x)| = |M_o| \cdot |S_o|.
\]

Furthermore, \(M_{au} \) denotes the subgroup of \(M_o \) generated by all its unipotent elements. Certainly \(M_{au} \) is a characteristic subgroup of \(C_G(x) \).

Proposition 2.2. Let \(s_i \neq 1 \) be a representative of a nonregular semisimple conjugacy class of \(G_o \). The structure of its centralizer \(C = C_G(s_i) \) is as given in Tables 2.2a and 2.2b.

In particular, \(M_o = M_{au} \) for every \(s_i \neq s_2 \).

Table 2.2a. Even \(q \)

| class | \(M_{au} \) | \(S_o \) | \(|C : M_{au} \cdot S_o| \) | \(C, C', \) or \(C/S_o \) |
|--------|------------------------------|----------------|----------------------------|---|
| \(s_3 \) | \(SL_2(q^3) \) | \(Z_{q-1} \) | 1 | \(C = SL_2(q^3) \times Z_{q-1} \) |
| \(s_4 \) if \(3 \mid q-1 \) | \(SL_3(q) \) | \(Z_{q^2+q+1} \) | 1 | \(C = SL_3(q) \times Z_{q^2+q+1} \) |
| \(s_5 \) if \(3 \mid q-1 \) | \(SL_3(q) \) | \(Z_{q^2+q+1} \) | 3 | \(C/S_o = PGL_3(q) \) |
| \(s_5 \) | \(SL_2(q) \) | \(Z_{q^3-1} \) | 1 | \(C = SL_2(q) \times Z_{q^3-1} \) |
| \(s_7 \) | \(SL_2(q^3) \) | \(Z_{q+1} \) | 1 | \(C = SL_2(q^3) \times Z_{q+1} \) |
| \(s_9 \) if \(3 \mid q+1 \) | \(SU_3(q) \) | \(Z_{q^2-q+1} \) | 1 | \(C/S_o = PU_3(q) \) |
| \(s_9 \) if \(3 \mid q+1 \) | \(SU_3(q) \) | \(Z_{q^2-q+1} \) | 3 | \(C/S_o = PU_3(q) \) |
| \(s_{10} \) | \(SL_2(q) \) | \(Z_{q^3-1} \) | 1 | \(C = SL_2(q) \times Z_{q^3-1} \) |

Table 2.2b. Odd \(q \)

| class | \(M_{au} \) | \(S_o \) | \(|C : M_{au} \cdot S_o| \) | \(C, C', \) or \(C/S_o \) |
|--------|------------------------|----------------|----------------------------|---|
| \(s_2 \) | \(SL_2(q^3) \times SL_2(q) \) | \(1 \) | 2 | \(C' = SL_2(q^3) \times SL_2(q) \) |
| \(s_3 \) | \(SL_2(q^3) \) | \(Z_{q-1} \) | 2 | \(C/S_o = PGL_2(q^3) \) |
| \(s_4 \) if \(3 \mid q-1 \) | \(SL_3(q) \) | \(Z_{q^2+q+1} \) | 1 | \(C = SL_3(q) \times Z_{q^2+q+1} \) |
| \(s_4 \) if \(3 \mid q-1 \) | \(SL_3(q) \) | \(Z_{q^2+q+1} \) | 3 | \(C/S_o = PGL_3(q) \) |
| \(s_5 \) | \(SL_2(q) \) | \(Z_{q^3-1} \) | 2 | \(C/S_o = PGL_2(q) \) |
| \(s_7 \) | \(SL_2(q^3) \) | \(Z_{q+1} \) | 2 | \(C/S_o = PGL_2(q^3) \) |
| \(s_9 \) if \(3 \mid q+1 \) | \(SU_3(q) \) | \(Z_{q^2-q+1} \) | 1 | \(C = SU_3(q) \times Z_{q^2-q+1} \) |
| \(s_9 \) if \(3 \mid q+1 \) | \(SU_3(q) \) | \(Z_{q^2-q+1} \) | 3 | \(C/S_o = PU_3(q) \) |
| \(s_{10} \) | \(SL_2(q) \) | \(Z_{q^3-1} \) | 2 | \(C/S_o = PGL_2(q) \) |
Proof. In Table 7 of Deriziotis [4, p. 140], for each centralizer $C_{G}(s_{i})$ the isogeny class of the groups M_{a} and the orders of the cyclic groups S_{a} are given. Using similar methods as in Iwahori’s paper [1, p. 281], the precise group structure of $C_{G}(s_{i})$ can be determined.

In order to find the mixed conjugacy classes, we use Spaltenstein’s [14] results on the orders of the centralizers $C_{G}(u_{j})$ of the unipotent elements u_{j} of G_{o}, with the following notation. (See Table A.)

<table>
<thead>
<tr>
<th>unipotent class</th>
<th>notation of [14] for even q</th>
<th>for odd q</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{1}</td>
<td>A_{1}</td>
<td>A'_{1}</td>
</tr>
<tr>
<td>u_{2}</td>
<td>A_{2}</td>
<td>A''_{2}</td>
</tr>
<tr>
<td>u_{3}</td>
<td>$D_{4}(a_{1})$</td>
<td>D_{4}</td>
</tr>
<tr>
<td>u_{4}</td>
<td>$D_{4}(a_{1})$</td>
<td>D_{4}</td>
</tr>
<tr>
<td>u_{5}</td>
<td>$D_{4}(a_{1})$</td>
<td>D_{4}</td>
</tr>
<tr>
<td>u_{6}</td>
<td>$D_{4}(a_{1})$</td>
<td>D_{4}</td>
</tr>
<tr>
<td>u_{7}</td>
<td>$D_{4}(a_{1})$</td>
<td>D_{4}</td>
</tr>
</tbody>
</table>

Proposition 2.3. G_{o} has $q^{3} + q^{2} + q$ and $q^{3} + q^{2} + q - 2$ mixed conjugacy classes with representatives $s_{j} \cdot u_{j} = u_{j} \cdot s_{j}$ for odd and even q, respectively, where $s_{j} \neq 1$ is a representative of a nonregular semisimple and $u_{j} \neq 1$ is a representative of a unipotent conjugacy class of G_{o}. These mixed conjugacy classes are given in Table 2.4.

Furthermore, if $k(G_{o})$ denotes the number of all conjugacy classes of G_{o}, then

$$k(G_{o}) = \begin{cases}
q^{4} + q^{3} + q^{2} + q + 6, & \text{if } q \text{ is odd}, \\
q^{4} + q^{3} + q^{2} + q + 5, & \text{if } q \text{ is even}.
\end{cases}$$

<table>
<thead>
<tr>
<th>ss</th>
<th>unipotent classes of $C_{G}(s_{i})$</th>
<th>Number of mixed classes $(s_{j}u_{j})G_{o}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{2}</td>
<td>$u_{1}, u_{2}, u_{3}, u_{4}$</td>
<td>4</td>
</tr>
<tr>
<td>s_{3}</td>
<td>u_{2}</td>
<td>$\frac{1}{2}(q - 3)$</td>
</tr>
<tr>
<td>s_{4}</td>
<td>u_{1}, u_{3}</td>
<td>$q^{2} + q$</td>
</tr>
<tr>
<td>s_{5}</td>
<td>u_{1}</td>
<td>$\frac{1}{2}(q^{3} - q^{2} - q - 3)$</td>
</tr>
<tr>
<td>s_{7}</td>
<td>u_{2}</td>
<td>$\frac{1}{2}(q - 1)$</td>
</tr>
<tr>
<td>s_{9}</td>
<td>u_{1}, u_{4}</td>
<td>$q^{2} - q$</td>
</tr>
<tr>
<td>s_{10}</td>
<td>u_{1}</td>
<td>$\frac{1}{2}(q^{3} - q^{2} + q - 1)$</td>
</tr>
</tbody>
</table>

3. Deligne-Lusztig characters. In this section we determine the values of the Deligne-Lusztig characters of $G_{o} = D_{4}(q)$. Concerning the definition and the main properties of these class functions we refer to Carter [2] and Lusztig [11].

Let T_{0} be a maximally split torus of the connected reductive group G, X its character group, and $V = X \otimes \mathbb{R}$. Then $\sigma = q\tau$ acts on V. The relative rank $\text{rel rank } G$ of G is the number of eigenvalues of σ on V which are equal to q; see Carter [2].

Definition. $\varepsilon_{G} = (-1)^{\text{rel rank } G}$.

By Corollary 6.5.7 of [2], $\varepsilon_{G} = \varepsilon_{T_{0}} = 1$ in our case $G_{o} = D_{4}(q)$.

Lemma 3.1. Let $s \neq 1$ be a semisimple element of $G_{o} = D_{4}(q)$. Then its centralizer $C_{G}(s)$ has sign $\varepsilon_{c_{G}(s)}$ which is given by Table B.
D. I. DERIZIOTIS AND G. O. MICHLER

Proof. This follows easily from Proposition 2.2 and Corollary 6.5.7 of [2].

Let s be a semisimple element and T a maximal torus of G_0. Then as in group theory we write $s \in G_0 T$, if $s^g \in T$ for some $g \in G_0$. In the following, $C(s)$ denotes the centralizer $C_{G_0}(s)$. If Θ is a linear character of T, then $R_{T,\Theta}$ is the corresponding Deligne-Lusztig character of G_0. For any unipotent element $u \in G_0$ the Green function Q_T has value $Q_T(u) = R_{T,1}(u)$. If it is necessary to indicate the ambient group we also write $Q_T^G(u)$ and $R_{T,\Theta}^G$.

For the sake of completeness the following subsidiary result is given.

Lemma 3.2. Let T be a maximal torus of $G_0 = 3D_4(q)$ with Weyl group W_T. Then for every linear character Θ of T and every $x = su \in G_0$ in Jordan form the Deligne-Lusztig character $R_{T,\Theta}^G$ has value

$$R_{T,\Theta}^G(x) = \begin{cases} \frac{\epsilon_{C(s)} \epsilon_{T}|C(s)|}{|T|} \hat{\Theta}(s) & \text{if } u = 1 \text{ and } s \in G_0 T, \\ \hat{\Theta}(s) Q_T^C(s)(u) & \text{if } u \neq 1 \text{ and } s \in G_0 T, \\ 0 & \text{if } s \notin G_0 T, \end{cases}$$

where

$$\hat{\Theta}(s) = \frac{1}{|C_{W_T}(s)|} \sum_{w \in W_T} \Theta(wsw^{-1}).$$

With the notation of Propositions 2.2 and 2.3 we state

Lemma 3.3. Let $s \neq 1$ be a semisimple element of $G_0 = 3D_4(q)$ and u a unipotent element of $C(s)$. Let T be a maximal torus of G_0 contained in $C(s)$. Then the values $Q_T(u)$ of the Green functions of $C(s)$ are given by

(a) $Q_T(u) = 1$, if $s \in (s_i)_{G_0}$ and $i \in \{3, 5, 7, 10\}$.

(b)

<table>
<thead>
<tr>
<th>$C(s_2)$</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>u_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{T_0}</td>
<td>$q + 1$</td>
<td>$q^3 + 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q_{T_1}</td>
<td>$1 - q$</td>
<td>$q^3 + 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q_{T_5}</td>
<td>$q + 1$</td>
<td>$1 - q^3$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q_{T_6}</td>
<td>$1 - q$</td>
<td>$1 - q^3$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(c)

<table>
<thead>
<tr>
<th>$C(s_4)$</th>
<th>u_1</th>
<th>u_3</th>
<th>$C(s_9)$</th>
<th>u_1</th>
<th>u_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{T_0}</td>
<td>$1 + 2q$</td>
<td>1</td>
<td>Q_{T_2}</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q_{T_1}</td>
<td>1</td>
<td>1</td>
<td>Q_{T_6}</td>
<td>$q + 1$</td>
<td>1</td>
</tr>
<tr>
<td>Q_{T_2}</td>
<td>$1 - q$</td>
<td>1</td>
<td>Q_{T}</td>
<td>$1 - 2q$</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof. Every Green function Q_T is a linear combination of the unipotent characters of $C(s)$. Using then the character tables of $SL_2(q)$, $SL_3(q)$, $SU_3(q)$ of [6 and 13] it is easy to compute the given values of $Q_T(u)$, because Proposition 2.2 gives the group structure of $C(s)$.

With the notation of Propositions 1.2 and 2.1 we state the following result.

Lemma 3.4. Let $q \neq 2$ and s be a semisimple element. Then for $0 \leq j \leq 6$, the centralizer $C_{W_j}(s)$ of s in the Weyl group W_j is as given in Table 3.4.

<table>
<thead>
<tr>
<th>s</th>
<th>$C_{W(T_2)}(s)$</th>
<th>$C_{W(T_3)}(s)$</th>
<th>$C_{W(T_4)}(s)$</th>
<th>$C_{W(T_5)}(s)$</th>
<th>$C_{W(T_6)}(s)$</th>
<th>$C_{W(T_7)}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$W(G_2) = D_{12}$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Q_8 \cdot Z_3$</td>
<td>$Q_8 \cdot Z_3$</td>
<td>Z_4</td>
</tr>
<tr>
<td>s_2</td>
<td>$Z_2 \times Z_2$</td>
</tr>
<tr>
<td>s_3</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_4</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_5</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_6</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_7</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_8</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_9</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{10}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{11}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{12}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{13}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{14}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{15}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
</tbody>
</table>

In the following subsidiary result $H \rtimes U$ denotes the semidirect product of the normal subgroup H with the subgroup U of the finite group X.

Lemma 3.5. Let $q = 2$. Let s be a semisimple element and $W_j = N_{G_2}(T_j)/T_j$, $0 \leq j \leq 6$. Then the centralizer $C_{W_j}(s)$ of s in W_j is as given in Table 3.5.

<table>
<thead>
<tr>
<th>s</th>
<th>$C_{W(T_2)}(s)$</th>
<th>$C_{W(T_3)}(s)$</th>
<th>$C_{W(T_4)}(s)$</th>
<th>$C_{W(T_5)}(s)$</th>
<th>$C_{W(T_6)}(s)$</th>
<th>$C_{W(T_7)}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$SL_3(2) \rtimes Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Q_8 \cdot Z_3$</td>
<td>$Q_8 \cdot Z_3$</td>
<td>Z_4</td>
<td>$W(G_2) = D_{12}$</td>
</tr>
<tr>
<td>s_4</td>
<td>SL_3(2)</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td></td>
</tr>
<tr>
<td>s_6</td>
<td>SL_3(2)</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td>$Z_2 \times Z_2$</td>
<td></td>
</tr>
<tr>
<td>s_7</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_8</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_9</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{10}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{11}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{12}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{13}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{14}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>s_{15}</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
</tbody>
</table>

Proof. Since no root vanishes on the tori T_1, T_3, T_4, T_5, and T_6 the proof of Lemma 3.4 remains valid for these cases by Veldkamp’s theorem [15].

By Proposition 2.2 $H = C_{G_2}(T_0) = SL_3(2) \rtimes Z_7$. Propositions 1.2 and 2.1 imply that $N_{G_2}(T_0)/H = Z_2$. Thus $N_{G_2}(T_0) = SL_3(2) \rtimes Z_2$. The remaining cases are proved similarly.
In order to give the values of the Deligne-Lusztig characters $R_{T, \Theta}$ we introduce the following

Notation. For a σ-stable maximal torus T of G we fix an isomorphism $T_\sigma \cong \hat{T}_\sigma = \text{Hom}(T_\sigma, \mathbb{C}^*)$. The linear character of T_σ corresponding to $s \in T_\sigma$ under this isomorphism will be denoted by \hat{s}.

Let T_j be a maximal torus of G_σ, $0 \leq j \leq 6$, and $s_i \in T_j$ be a representative of a semisimple conjugacy class of G_σ, where $i \in \{2, 3, \ldots, 15\}$.

Table 3.6. Deligne-Lusztig characters

<table>
<thead>
<tr>
<th>s_2</th>
<th>$s_2 u_1$</th>
<th>$s_2 u_2$</th>
<th>$s_2 u_3$</th>
<th>$s_2 u_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{0,i}$</td>
<td>$(q^3 + 1)(q + 1)\eta_0(s_2)$</td>
<td>$(q + 1)\eta_0(s_2)$</td>
<td>$(q^3 + 1)\eta_0(s_2)$</td>
<td>$\eta_0(s_2)$</td>
</tr>
<tr>
<td>$R_{1,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{2,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{3,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{4,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{5,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{6,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_3</th>
<th>$s_3 u_2$</th>
<th>s_4</th>
<th>$s_4 u_1$</th>
<th>$s_4 u_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{0,i}$</td>
<td>$(q^3 + 1)\eta_0(s_3)$</td>
<td>$\eta_0(s_3)$</td>
<td>$(q + 1)(q^2 + q + 1)\eta_0(s_4)$</td>
<td>$(q + 1)\eta_0(s_4)$</td>
</tr>
<tr>
<td>$R_{1,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{2,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{3,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{4,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{5,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R_{6,i}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

G^* is isomorphic to the fixed points $G_{^*}$ of the triality endomorphism σ^* of the adjoint group G^* of type D_4, which is dual to G; see [2, p. 112]. As G^* has a connected center, Lusztig has shown in [11] that there is a bijective map $\chi \mapsto (\chi_3, \chi_u)$ between the irreducible characters χ of G^* and pairs (χ_3, χ_u), where χ_3 is a semisimple character of G^* and χ_u is a unipotent character of the centralizer $C(s)$ of $s \in W$.

We set $R_{j,i} = R_{T_j,3}$, and

$$N_{j,i}(s) = \frac{1}{|C_{W_j}(s)|} \sum_{w \in W_j} \hat{s}_i(s^w),$$

where W_j is the Weyl group of T_j.

G^* is isomorphic to the fixed points $G_{^*}$ of the triality endomorphism σ^* of the adjoint group G^* of type D_4, which is dual to G; see [2, p. 112]. As G^* has a connected center, Lusztig has shown in [11] that there is a bijective map $\chi \mapsto (\chi_3, \chi_u)$ between the irreducible characters χ of G^* and pairs (χ_3, χ_u), where χ_3 is a semisimple character of G^* and χ_u is a unipotent character of the centralizer $C(s)$ of $s \in W$.

We set $R_{j,i} = R_{T_j,3}$, and

$$N_{j,i}(s) = \frac{1}{|C_{W_j}(s)|} \sum_{w \in W_j} \hat{s}_i(s^w),$$

where W_j is the Weyl group of T_j.

G^* is isomorphic to the fixed points $G_{^*}$ of the triality endomorphism σ^* of the adjoint group G^* of type D_4, which is dual to G; see [2, p. 112]. As G^* has a connected center, Lusztig has shown in [11] that there is a bijective map $\chi \mapsto (\chi_3, \chi_u)$ between the irreducible characters χ of G^* and pairs (χ_3, χ_u), where χ_3 is a semisimple character of G^* and χ_u is a unipotent character of the centralizer $C(s)$ of $s \in W$.
a semisimple element \(s \in G \). Furthermore, this bijection satisfies the following conditions:

\[
(4.1) \quad \chi(1) = \chi_s(1)\chi_u(1),
\]

\[
(4.2) \quad (\chi, \varepsilon_T R_{T, \theta})_{C_n} = (\chi_u, \varepsilon_{C(s)} T R_{T,s})_{C(s)},
\]

because \(\varepsilon_G = 1 \) by Corollary 6.5.7 of [2].

The unipotent irreducible characters of \(SL_2(q') \) are the trivial character 1 and the Steinberg character \(St \). Following the notation of Simpson’s and Frame’s [13] character tables, besides 1 and \(St \) the groups \(SL_3(q) \) and \(SU_3(q) \) each have another unipotent irreducible character denoted by \(\chi_{qs} \) and \(\chi_{qs'} \), respectively, where \(s = q + 1 \) and \(s' = q - 1 \).

Using now the notation of Proposition 2.1 for the semisimple conjugacy classes \(s_i \neq 1, 2 \leq i \leq 15 \), and the structure of the centralizer \(C(s_i) \) given in Proposition 2.2, every irreducible character \(\chi = (\chi_s, \chi_u) \) of \(G_a = D_4(q) \) which is not unipotent can (up to conjugation) be uniquely denoted by

\[
\chi = \begin{cases}
\chi_i, & \text{if } \chi = (\chi_i, \emptyset), \text{ and } s_i \text{ is regular} \\
\chi_{i,1}, & \text{if } \chi = (\chi_{s_i}, 1), \text{ and } s_i \neq 1 \text{ is not regular} \\
\chi_{i,St}, & \text{if } \chi = (\chi_{s_i}, St) \\
\chi_{i,qs}, & \text{if } \chi = (\chi_{s_i}, \chi_{qs}) \\
\chi_{i,qs'}, & \text{if } \chi = (\chi_{s_i}, \chi_{qs'}) \\
\chi_{i,StSt'}, & \text{if } i = 2 \text{ and } St, St' \text{ denote the Steinberg characters of } SL_2(q^3), SL_2(q), \text{ respectively.}
\end{cases}
\]

We keep Spaltenstein’s [14] notation of the unipotent irreducible characters of \(G_a \). Their values are given in [14].

Therefore the following result and the table of the Deligne-Lusztig characters complete the character table of \(G_a \).

Theorem 4.3. With the values of the Deligne-Lusztig characters \(R_{i,j} \) given in Table 3.6, the values of the nonunipotent irreducible characters \(\chi \) of \(G_a \) are determined as follows.

(a) \[
\begin{align*}
\chi_{2,1} &= \frac{1}{4} (R_{0,2} + R_{2,2} + R_{1,2} + R_{6,2}) \\
\chi_{2,St} &= \frac{1}{4} (R_{0,2} - R_{2,2} + R_{1,2} - R_{6,2}) \\
\chi_{2,St'} &= \frac{1}{4} (R_{0,2} + R_{2,2} - R_{1,2} - R_{6,2}) \\
\chi_{2,StSt'} &= \frac{1}{4} (R_{0,2} - R_{2,2} - R_{1,2} + R_{6,2})
\end{align*}
\]

(b) \[
\begin{align*}
\chi_{3,1} &= \frac{1}{2} (R_{0,3} + R_{2,3}) \\
\chi_{3,St} &= \frac{1}{2} (R_{0,3} - R_{2,3})
\end{align*}
\]
(c) \[\begin{align*}
\chi_{4,1} &= \frac{1}{6} (R_{0,4} + 3R_{1,4} + 2R_{3,4}) \\
\chi_{4,St} &= \frac{1}{6} (R_{0,4} - 3R_{1,4} + 2R_{3,4}) \\
\chi_{4,qS} &= \frac{1}{3} (R_{0,4} - R_{3,4})
\end{align*}\]

(d) \[\begin{align*}
\chi_{5,1} &= \frac{1}{2} (R_{0,5} + R_{1,5}) \\
\chi_{5,St} &= \frac{1}{2} (R_{0,5} - R_{1,5})
\end{align*}\]

(e) \[\chi_{6} = R_{0,6}\]

(f) \[\begin{align*}
\chi_{7,1} &= -\frac{1}{2} (R_{1,7} + R_{6,7}) \\
\chi_{7,St} &= -\frac{1}{2} (R_{1,7} - R_{6,7})
\end{align*}\]

(g) \[\chi_{8} = -R_{1,8}\]

(h) \[\begin{align*}
\chi_{9,1} &= -\frac{1}{6} (R_{6,9} + 3R_{2,9} + 2R_{4,9}) \\
\chi_{9,St} &= \frac{1}{6} (R_{6,9} - 3R_{2,9} + 2R_{4,9}) \\
\chi_{9,qS} &= -\frac{1}{3} (R_{6,9} - R_{4,9})
\end{align*}\]

(i) \[\begin{align*}
\chi_{10,1} &= -\frac{1}{2} (R_{2,10} + R_{6,10}) \\
\chi_{10,St} &= -\frac{1}{2} (R_{2,10} - R_{6,10})
\end{align*}\]

(j) \[\chi_{11} = -R_{2,11}\]

(k) \[\chi_{12} = R_{3,12}\]

(l) \[\chi_{13} = R_{4,13}\]

(m) \[\chi_{14} = R_{5,14}\]

(n) \[\chi_{15} = R_{6,15}\]

Proof. Let \(C(s_2)\) be the centralizer of the unique involution \(s_2 \neq 1\) in case \(q\) is odd. Its commutator subgroup \(C(s_2)' = \text{SL}_2(q^3) \rtimes \text{SL}_2(q)\) by Proposition 2.2. Since the central involution \(s_2\) of \(C(s_2)\) is in the kernel of each unipotent irreducible character of \(C(s_2)\)' the Green functions of \(C(s_2)\) are given by

\[R_{T_0,1}^{C(s_2)} = (1 + St) \otimes (1 + St') = 1 \otimes 1 + St \otimes 1 + 1 \otimes St' + St \otimes St',\]

\[R_{T_1,1}^{C(s_2)} = (1 + St) \otimes (1 - St') = 1 \otimes 1 + St \otimes 1 - 1 \otimes St' - St \otimes St',\]
\[R_{T_2,1}^{C(s_2)} = (1 - St) \otimes (1 + St') \]
\[= 1 \otimes 1 - St \otimes 1 + 1 \otimes St' - St \otimes St'. \]
\[R_{T_3,1}^{C(s_3)} = (1 - St) \otimes (1 - St') \]
\[= 1 \otimes 1 - St \otimes 1 - 1 \otimes St' + St \otimes St'. \]

By Lemma 3.1 \(\epsilon_{C(s_2)} = 1 \). Therefore we obtain from (4.2) the equations
\[R_{0,2} = X_{2,1} + X_{2,St} + X_{2,St'} \]
\[R_{1,2} = X_{2,1} - X_{2,St} - X_{2,St'} \]
\[R_{2,2} = X_{2,1} - X_{2,St} + X_{2,St'} \]
\[R_{6,2} = X_{2,1} + X_{2,St} + X_{2,St'} - X_{2,StSt'}. \]

This system of linear equations has the unique solution given in assertion (a).

The unipotent irreducible characters of \(\text{SL}_3(q) \) are 1, \(St \), and \(x_{q^2} \). By Simpson and Frame [13, p. 492], and Proposition 2.2 they extend uniquely to unipotent irreducible characters of \(C(s_4) \). Therefore the Green functions of \(C(s_4) \) are given by
\[R_{0,1} = 1 + 2x_{q^2} + St, \]
\[R_{1,1} = 1 - St, \]
\[R_{3,1} = 1 - x_{q^2} + St. \]

By Lemma 3.1 \(\epsilon_{C(s_4)} = 1 \). Therefore we obtain from (4.2) the equations
\[R_{0,4} = X_{4,1} + 2x_{4,q^2} + X_{4,St'}, \]
\[R_{1,4} = X_{4,1} - X_{4,St'}, \]
\[R_{3,4} = X_{4,1} - X_{4,q^2} + X_{4,St'}. \]

This system of linear equations has the unique solution given in (c). Using the same methods we obtain the assertions (h), (b), (d), (f) and (i).

By Corollary 7.3.5 of [2] \(\epsilon_{C(s_i)} R_{T_i,i} \) is irreducible, if \(s_i \) is a regular element of \(G_0 \). This completes the proof.

Proof of Table 4.4. The classification of the irreducible characters \(\chi_{s_i,u} \) follows from (4.1) and Proposition 2.2. Their degrees are computed by means of (4.1) and Theorem 8.4.8 of [2].

The numbers of irreducible characters in each family \(\chi_{s_i,u} \) equals the number \(N(E_i, [w]) \) of conjugacy classes of the semisimple elements \(s_i \) defined in Proposition 2.1. Let \(w \in \Omega_{J_i} \) and
\[T(w, J_i) = \{ t \in T \mid w \sigma(t) = t, C_w(t) = W_i \}. \]
Define \(Z_{J_i}(w) = \{ y \in \Omega_{J_i} \mid y^{-1}w \sigma(y) = w \} \). Then Lemma 3.1 of [5] asserts that \(N(E_i, [w]) = |T(w, J_i)|/|Z_{J_i}(w)| \). As \(G \) is simply connected, Theorem 3.3 of [5] applies. Therefore \(|T(w, J_i)| = F_{w,J_i}(q) \), where \(F_{w,J_i}(X) \) is a polynomial with integral coefficients and degree \(\deg(F_{w,J_i}(X)) = 4 - |J_i| \). In particular, \(\deg(F_{1,0}(X)) = 4 \).
Using properties of the Brauer complex of G in [5] the first author introduced a method for finding the polynomial $F_{w_0,j}(X)$ for fixed $w_0 \in \Omega_j$ and J_j. As an example we employ this method for the computation of $F_{x,0}(X)$, i.e., $w_0 = 1 \in \Omega_j = W$.

The σ-conjugacy class [1] of 1 in $\Omega_0 = W$ consists of 16 elements $w_0 \in W$ by Proposition 2.1. Let $n = n(w)$ be the order of $w \tau^{-1}$. Since $0 \not\in J_5 = \emptyset$ case (A) of [5] applies. Thus we have to find the number $k(1, \emptyset, q)$ of all $y \in \Omega \subseteq \text{Hom}(K^*, T)$ satisfying the following 16 systems of inequalities:

\[
\sum_{i=0}^{n-1} q^i(w \tau^{-1})^{i+1}(r_j)(\tau^{-1}(y)) > 0 \quad \text{for} \quad j = 1, 2, 3, 4, \quad \sum_{i=0}^{n-1} q^i(w \tau^{-1})^{i+1}(r_0)(\tau^{-1}(y)) < q^n - 1.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
By [5] \(k(1, \varnothing, q) = F_{1, \varnothing}(q) \). Since \(F_{1, \varnothing}(X) \) is an integral polynomial of degree 4, its coefficients are easily found by interpolation, if these numbers \(k(1, \varnothing, q) \) can be determined for five different choices of \(q \). In case \(q \) is odd, we get the following numbers:

<table>
<thead>
<tr>
<th>(q)</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{1, \varnothing}(q))</td>
<td>0</td>
<td>15</td>
<td>94</td>
<td>317</td>
<td>796</td>
</tr>
</tbody>
</table>

Thus interpolation yields that \(F_{1, \varnothing}(X) = q^4 - 4q^3 + 2q^2 - 2q + 15 \).

As \(|Z_\varnothing(1)| = |Z_{J_5}(1)| = |W_6| = 12 \), it follows that

\[
N(E_5, 1) = \frac{1}{12}(q^4 - 4q^3 + 2q^2 + 15),
\]

which is the number of regular conjugacy classes of \(G_a \) intersecting \(T_0 \) nontrivially.

For even \(q \), we interpolate at \(q = 2, 4, 8, 16 \) and 32. Then the same method applies here as in all other remaining cases.

5. The blocks of irreducible characters. Let \(r > 0 \) be a prime number. In this section we determine the distribution of the irreducible characters \(\chi_{s,u} \) of \(G_a = 3D_4(q) \) into \(r \)-blocks. As an application we then obtain the validity of R. Brauer’s height zero conjecture, his conjecture on the number of irreducible characters in a block, and the Alperin-McKay conjecture for this class of simple groups.

Let \(R \) be a complete discrete rank one valuation ring with maximal ideal \(\text{max}(R) = \pi R \), residue class field \(F = R/\pi R \) of characteristic \(r > 0 \), and quotient field \(S = \text{quot}(R) \) of characteristic 0 such that \(S \) and \(F \) are splitting fields for the finite group \(G \). The block ideals of the \(r \)-block \(B \) of \(G \) in the group algebras \(FG, RG \) and \(SG \) are denoted by \(B, \hat{B} \) and \(B_S = \hat{B} \otimes_R S \) respectively. In particular, \(B = \hat{B} \otimes_R F \). The number of simple \(SG \)-modules of \(B_S \) is denoted by \(k(B) \), and \(k_0(B) \) is the number of irreducible characters \(\chi \) of \(G_a \) belonging to \(B \) with height \(h \chi = 0 \).

The number of irreducible modular characters of \(B \) is \(1(B) \).

Let \(B \) be an \(r \)-block of a finite group \(G \) with defect group \(\delta(B) = GD \). Let \(H = N_G(D) \) and \(C = DC_G(D) \). By Brauer’s first main theorem there is a unique block \(B_1 \) of \(H \) with defect group \(\delta(B_1) = D \) such that \(B = B_1^G \); it is called the Brauer correspondent of \(B \) in \(H \).

The Alperin-McKay conjecture claims that \(k_0(B) = k_0(B_1) \). Brauer conjectured that in general \(k(B) \leq |D| \), and his height zero conjecture says that \(k_0(B) = k(B) \) if and only if \(\delta(B) \) is abelian.

Let \(B \) be an \(r \)-block of a finite group \(G \) with defect group \(\delta(B) = GD \). Then by Brauer’s extended first main theorem there is a block \(b \) of \(C = DC_G(D) \) with defect group \(D \) such that \(B = b^G \). Any such block \(b \) of \(C \) is called a root of \(B \). By Corollary 4.6 of [7, p. 204], \(b \) contains exactly one irreducible character \(\chi_s \) which has \(D \) in its kernel. This character \(\chi_s \) is called the canonical character of the block \(B \). If \(H = N_G(D) \), then \(\chi_s \) is uniquely determined by \(B \) up to \(H \)-conjugacy. The inertial subgroup \(T_H(b) = \{ x \in H \mid b^x = b \} = T_H(\chi_s) = \{ x \in H \mid \chi_s^x = \chi_s \} \).

By Theorem 4.3 every irreducible character \(\chi \) of \(G_a = 3D_4(q) \) is of the form \(\chi_{t,u} \), where \(t \) is a representative of a semisimple conjugacy class of \(G_a \), and where \(\chi_u \) is an...
irreducible unipotent character of $C_{G_a}(t)$. We now study the distribution of the irreducible characters of G_a into r-blocks B of G_a. Such a block B is called unipotent, if B contains a unipotent character of G_a.

Corollary 5.1. (a) For every prime number $r > 0$, $G_a = ^3D_4(q)$ contains r-blocks of defect zero.

(b) If $r \neq 2$, then G_a contains unipotent r-blocks of defect zero.

Proof. Let r^a be the order of a Sylow r-subgroup of G_a. Then by Lemma 4.19 of [7, p. 159], an irreducible character χ of G_a belongs to an r-block B with defect $d(B) = 0$ if and only if $r^a | \chi(1)$. Hence (b) follows immediately from Table 4.4.

If $r | q$, then (a) holds by Steinberg’s tensor product theorem. Let $r \neq q$. From (b) it follows that we may assume that $r = 2$. Then by Table 4.4 the $\frac{1}{4}(q^4 - q^2)$ irreducible characters χ_{14} yield 2-blocks of defect zero.

Lemma 5.2. Let r be a prime number, $r \not\in \{2, 3, p\}$. If $D \cong I$ is a defect group of an r-block B of G_a, then either D is cyclic or a Sylow r-subgroup which is abelian and generated by 2 elements.

Proof. As $r \not\in \{2, 3, p\}$, G_a has an abelian Sylow r-subgroup S by Corollary 5.19 of [1, p. 212]. Proposition 1.2 asserts that S has at most two generators.

If D is not cyclic, then by Theorem 9.2 of [7, p. 231], there is a central element $1 \neq x \in D$ and an r-block b of $C_{G_a}(x)$ such that $B = b^G$ and both blocks B and b have defect group D.

Using the character tables of $SL_2(q)$, $SL_3(q)$, and $SU_3(q)$ given in [6 and 13] it is easy to see that each r-block b_1 of any of these groups has a Sylow r-subgroup as defect group $\delta(b_1)$, if $\delta(b_1)$ is not cyclic. Therefore Proposition 2.2 implies that $\delta(b) = g_a D$ is a Sylow r-subgroup of G_a. This completes the proof.

Proposition 5.3. Let q be odd, and let 2^a be the highest power of 2 dividing $q - 1$ or $q + 1$ if $q \equiv 1(4)$ or $q \equiv 3(4)$, respectively. Let Q be a Sylow 2-subgroup of $SL_2(q)$ contained in a Sylow 2-subgroup P of G_a, and let Z be a cyclic 2-subgroup of Q of order $|Z| = 2^a$. Then P contains an involution x such that $S = \{Q, x\}$ is a semidihedral subgroup of P of order $|S| = 2^{a+2}$.

If B is a 2-block of G_a with defect group $D \neq 1$, then one of the following holds:

(a) $D = g_a P$ if and only if $B = B_0$ the principal 2-block of G_a.

(b) $D = S \ast Z$.

(c) $D = S$.

(d) $D = Z \times Z$.

(e) D is isomorphic to a Klein four subgroup of P.

(f) D is a cyclic Sylow 2-subgroup of a cyclic maximal torus of G_a.

Proof. G_a has only one class of involutions $s_2 \neq 1$ by Proposition 2.1. Let $C = C_{G_a}(s_2)$. Then by Proposition 2.2 C' is the central product $SL_2(q^2) \ast SL_2(q)$. Hence a Sylow 2-subgroup P of G_a contains a central product of two isomorphic generalized quaternion groups Q, and $|P : Q \ast Q| = 2$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
By Proposition 2.2 the defect group \(D \) of \(B \) may be chosen such that \(s_2 \in Z(D) \). Thus \(K = DC_{G_o}(D) \leq G \cdot C \). Let \(b \) be a root of \(B \) in \(K \). Then \(\delta(b) = K \cdot D \) and \(B = b^{G_o} \). Furthermore, \(B_1 = b^e \) exists by Lemma 6.1 of [7, p. 209], and \(\delta(B_1) = D \), because \(B = B^{G_o} = (b^e)^G_o = b^{G_o} \).

By the character table of \(U = SL_2(q) \) [6, p. 228], we know that the principal 2-block \(B_0(U) \) of \(U \) is the only 2-block of \(U \) with defect group \(Q \), and that all other 2-blocks of \(U \) have either the center \(Z(Q) \) of order \(|Z(Q)| = 2 \) or a cyclic group \(Z \) of order \(2^a \geq 4 \) as a defect group. Up to isomorphism \(Q \) is also a Sylow 2-subgroup of \(SL_2(q) \). As \(C' = SL_2(q) \cdot SL_2(q^2) \), each block \(A \) of \(C' \) with defect group \(\delta(A) = E \) is mapped onto a block \(\tau(A) \) of \(C' \) such that \(\bar{C} = C'/\{s_2\} = PSL_2(q) \times PSL_2(q^2) \) with defect group \(\delta(\tau(A)) = E/\{s_2\} \). Hence \(E \) is isomorphic to one of the 2-subgroups \(Q \cdot Q, Q \cdot Z, Q, Z \cdot Z, Z \), or \(Z(Q) \). Since \(|C: C'| = 2 \) Green’s theorem [7, p. 107] implies that every 2-block \(A \) of \(C' \) induces up to a 2-block \(B' = A^C \) of \(C \). By Theorem 3.14 of [7, p. 201] \(\delta(B') \cap C' = \delta(A) = E \). Using now the group structure of \(P \) and \(C \) the assertions (b)-(f) follow.

Furthermore, by Brauer’s third main theorem the principal 2-block \(B_0 \) of \(G \) is the only 2-block of highest defect.

Proposition 5.4. Let \(3 \nmid q \). If \(B \) is a 3-block of \(G_o \) with defect group \(D \), then one of the following statements holds:

(a) \(D \) is nonabelian if and only if \(D \) is a Sylow 3-subgroup of \(G_o \).

(b) \(D \) is a noncyclic Sylow 3-subgroup of a maximal torus of \(G_o \).

(c) \(D \) is a cyclic Sylow 3-subgroup of a cyclic maximal torus of \(G_o \).

Proof. (a) Let \(B \) be a 3-block of \(G_o \) with a nonabelian defect group \(D \). Either \(3 \mid q - 1 \) or \(3 \mid q + 1 \). Suppose that \(3 \mid q - 1 \). By Theorem 9.2 of [7, p. 231], there is a central element \(1 \neq x \in D \) of order 3 and an \(r \)-block \(b \) of \(C = G_o(x) \) such that \(B = b^{G_o} \), and \(D \) is a defect group of \(b \). By Proposition 2.2, \(C' = SL_3(q) \cdot Z \), where \(Z \) is a cyclic group with \(|Z| = q^2 + q + 1 \), and where the cyclic group \(C/C' \) of order 3 acts trivially on \(Z \). By the character table of [13, p. 487], only the principal 3-block of \(U = SL_3(q) \) has a Sylow 3-subgroup \(D_1 \) of \(U \) as a defect group. Since \(3 \) divides \(|Z| \) only to the first power, \(C' \) has \(\frac{1}{2}(q^2 + q + 1) \) blocks \(b_1 \) with defect group \(D_1 \), and all other blocks of \(C' \) have abelian or cyclic defect groups. As \(C/C' \) acts trivially on \(Z \), it follows from Theorem 3.14 of [7, p. 201], that each 3-block \((b_1)^C \) of \(C \) has a Sylow 3-subgroup \(P \) of \(C \) and thus of \(G_o \) as a defect group. By Proposition 2.2 all other blocks \(b_2 \) of \(C \) have abelian or cyclic defect groups. Hence \(D = c_nP \) and \(b \in \{(b_1)^C\} \) by Lemma 9.1 of [7, p. 230].

Because of Proposition 2.2 the same argument can also be applied in the case of \(3 \mid q + 1 \). The converse implication is trivial.

So we may assume that \(D \) is abelian. The assertions (b) and (c) follow from Propositions 1.2 and 2.2 and the definition of a defect group, see [7, pp. 126 and 231].

Lemma 5.5. Let \(T_o \) be a maximal torus and \(D \) a Sylow \(r \)-subgroup of \(G_o \) contained in \(T \) where \(r \nmid p \). Let \(s \in T_o \) be an \(r \)-element of \(T_o \) and let \(\bar{s} \) denote the linear character
of T corresponding to s. Then for every $y \in D$ the Deligne-Lusztig characters $R_{T,s}$ agree on all r'-elements $x \in G_o$.

Proof. Let the r'-element $x = tu \in G_o$ be in Jordan form, where t is semisimple and u is unipotent. By Lemma 3.2

$$R^G_{T,s}(x) = \begin{cases} \varepsilon_{C(t)} \varepsilon_T \frac{C(t)}{|T|} \overline{\tilde{sy}(t)}, & \text{if } u = 1, \text{ and } t \in G_o T, \\ \overline{\tilde{sy}(t)} Q_f(t)(u), & \text{if } u \neq 1, \text{ and } t \in G_o T, \\ 0, & \text{if } t \notin G_o T, \end{cases}$$

where

$$\tilde{sy}(t) = \frac{1}{|C_{W(T)}(t)|} \sum_{w \in W(T)} \tilde{sy}(w t w^{-1}),$$

and $W(T) = N_{G_o}(T) / T$. As $t' = w t w^{-1} \in T$ is an r'-element for each $w \in W(T)$, $\tilde{y}(t') = 1$ for each $y \in D$, because D is a Sylow r-subgroup of T. Therefore

$$\tilde{sy}(t) = \frac{1}{|C_{W(T)}(t)|} \sum_{w \in W(T)} \tilde{s}(w t w^{-1}) \tilde{y}(w t w^{-1})$$

$$= \frac{1}{|C_{W(T)}(t)|} \sum_{w \in W(T)} \tilde{s}(w t w^{-1}) = \tilde{s}(t).$$

Hence $R^G_{T,s}(x) = R^G_{T,i}(x)$.

Proposition 5.6. Let B be an r-block of G_o with a cyclic defect group $\delta(B) = G_o D \neq 1$. Then the following assertions hold:

(a) D is a Sylow r-subgroup of a cyclic maximal torus T of G_o such that $D \leq T \leq C = C_{G_o}(D)$.

(b) B is either the principal r-block of G_o or B determines (up to G_o-conjugacy) uniquely a regular r'-element s of G_o contained in T such that $\theta = \varepsilon_c \varepsilon_T R^C_{T,s}$ is the canonical character of a root b of B in C.

(c) B is the principal r-block of G_o if and only if D is the Sylow r-subgroup of the Coxeter torus T_5 of G_o, and B has $\frac{1}{2}(|D| - 1)$ exceptional irreducible characters χ_y with $1 \neq y \in D$, and 4 nonexceptional irreducible characters which are the 4 unipotent characters $1, St, \rho_1$ and $\delta D_4[-1]$.

(d) If B is a nonprincipal r-block of G_o, then an irreducible character $\chi_{t,u}$ of G_o belongs to B if and only if $t \sim_{G_o} sy$ for some $y \in D$, and χ_u is a unipotent irreducible character of $C_{G_o}(sy)$ such that $\overline{sy} \chi_u$ belongs to an r-block β of $C_{G_o}(sy)$ with $B = \beta G$.

If $y \neq 1$, then sy is regular in G_o and $\chi_{t,u} = \chi_{xy}$ is an exceptional character of B. If s is regular in G_o, then χ_s is the only nonexceptional character of B. Otherwise $\chi_{s,1}$ and $\chi_{s,St}$ are the nonexceptional characters of B.

Proof. By Humphreys’ theorem [10] $r \equiv q$· So, if $q = 2$, then $r \in \{3, 7, 13\}$. In each case $|D| = r$, and all assertions are easily verified by means of Propositions 1.2, 2.2 and Table 4.4. Thus we may assume also that $q \neq 2$. Let e be the smallest integer such that $r | q^e - 1$. Then $e \in \{1, 2, 3, 6, 12\}$.
(a) By Propositions 5.3 and 5.4 we may assume that \(r \not\in \{2, 3\} \). Let \(C = C_{G_\alpha}(D) \).

By Dade’s theorem [7, p. 270], there is an \(r \)-block \(b \) of \(C \) with defect group \(D \) such that \(B = b^C \). Then by Lemma 5.2 and Corollary 5.19 of [1, p. 212], \(D \) is contained in a maximal torus \(T \) of \(G_\alpha \) such that \(T \leq C = C_{G_\alpha}(D) \). Let \(x \neq 1 \) be a generator of \(D \).

If \(x \) is regular in \(G_\alpha \), then \(C_{G_\alpha}(x) = T \), and \(b \) is an \(r \)-block of \(T \) with defect group \(D \). Hence \(D \) is a Sylow \(r \)-subgroup of \(T \). Thus \(T \) is a cyclic Coxeter torus \(T_5 \) of \(G_\alpha \) by Proposition 1.2.

Suppose that \(x \) is not regular. Let \(e = 1 \). Then by Proposition 2.2 there is an \(r \)-block \(b_1 \) of \(C_1 = C_{G_\alpha}(s_3) \) or of \(C_2 = C_{G_\alpha}(s_4) \) with defect group \(\delta(b_1) = D \), because \(r \neq 2 \), and \(x \in S_\alpha \cong \mathbb{Z}_{q-1} \) or \(x \in S_\alpha \cong \mathbb{Z}_{q^3-1} \). Since all \(r \)-blocks of \(SL_2(q^k) \), \(k \in \{3, 1\} \), either have a Sylow \(r \)-subgroup as a defect group or have defect zero, it follows that \(D \) is a Sylow \(r \)-subgroup of \(S_\alpha = \mathbb{Z}_{q-1} \) or of \(S_\alpha = \mathbb{Z}_{q^3-1} \). Therefore \(D \) is contained in the maximal torus \(T_2 = \mathbb{Z}_{(q^3+1)(q-1)} \) or \(T_1 = \mathbb{Z}_{(q^3-1)(q+1)} \) of \(C = C_{G_\alpha}(D) \). Hence \(D \) is a Sylow \(r \)-subgroup of the cyclic maximal torus \(T_2 \) or \(T_1 \).

Similarly one can show that \(D \) is the Sylow \(r \)-subgroup of \(T_1 \) or \(T_2 \) for \(e \in \{2, 3, 6\} \). Hence (a) holds.

Let \(e = 1 \) and \(T = T_2 \). Suppose that \(r \neq 2 \). Then \(C = C_{G_\alpha}(s_3) \), where \(D \) is a Sylow \(r \)-subgroup of the central torus \(S_\alpha \) of \(C \) with order \(|S_\alpha| = q - 1 \). The canonical character \(\Theta \) of the root \(b \) of \(B \) in \(C \) has \(D \) in its kernel \(ker \Theta \) by [7, p. 205]. Furthermore, \(\Theta \) is projective as an irreducible character of \(C/D \) by Brauer’s extended first main theorem. Since the centralizer of all noncentral semisimple elements of \(SL_2(q^3) \) are cyclic, it follows from the character table [6, pp. 228 and 235], and Proposition 2.2 that there is a regular \(r \)-element \(s \) of \(C \) in \(T \) with order \(o(s)|q^3 + 1 \) such that \(\Theta = \epsilon_{C(D)} \epsilon_TR^{C}_{T,s} \), because \(e = 1 \). As \(D \leq ker \Theta \), Theorem 7.2.8 of [2] implies that \(D \leq ker \hat{s} \). Furthermore, \(s \in \{s_{10}, s_9, s_{11}\} \) up to \(G_\alpha \)-conjugacy.

If \(e = 1 \), and \(T = T_1 \), then the same argument shows that \(\Theta = \epsilon_{C(D)} \epsilon_TR^{C}_{T_3,s} \), where \(s = s_8 \) is a regular \(r \)-element of \(G_\alpha \) with order \(o(s)|q + 1 \).

Suppose that \(e = 2 \), and \(T = T_1 \). Then there exists a regular \(r \)-element \(s \) of \(C \) such that \(\Theta = \epsilon_{C(D)} \epsilon_TR^{C}_{T_3,s} \) is the canonical character of \(b \), where \(o(s)|q^3 - 1 \). Hence \(s \in \{s_5, s_8, s_4\} \). If \(e = 2 \), and \(T = T_2 \), then by the same argument \(s = s_{11} \).

Let \(e = 3 \). Then \(r|q^2 + q + 1 \), and \(C = C_{G_\alpha}(s_4) \) by Proposition 2.2. Furthermore, \(T = T_1 \). By the character table [13] of \(SL_2(q) \) there is a regular \(r \)-element \(s \) of \(C \) contained in \(T \) such that \(\Theta = \epsilon_{C(D)} \epsilon_TR^{C}_{T_3,s} \) is the canonical character of \(b \), where \(o(s)|q^2 - 1 \). Hence \(s \in \{s_8, s_7\} \).

If \(e = 6 \), then the same argument shows that \(s \in \{s_3, s_{11}\} \), \(T = T_2 \).

Let \(e = 12 \). Then \(D \) is a Sylow \(r \)-subgroup of the cyclic Coxeter torus \(T = T_5 \). Its elements \(t \neq 1 \) are regular by Table 4.4. In particular, \(C = C_{G_\alpha}(D) = T \). If \(B \) is not the principal \(r \)-block, then the canonical character \(\Theta \) of the root \(b \) of \(B \) in \(C \) is of the form \(\Theta = \hat{s} \), where \(s \) is a regular \(r \)-element of \(T \). So \(B \) is the principal \(r \)-block if and only if \(D \) is a Sylow \(r \)-subgroup of \(T_5 \) and \(s = 1 \).

If \(r = 2 \), then Proposition 5.3 asserts that the generator \(x \) of \(D \) has order \(2^{e+1} \), and that \(D \) is a Sylow \(2 \)-subgroup of a cyclic maximal torus \(T \). Hence \(x \) is regular by
Propositions 2.1 and 2.2, and \(C = C_{G_\alpha}(D) = T \). Therefore the canonical character \(\Theta \) of the root \(b \) of \(B \) is of the form \(\Theta = \hat{s} \), where \(s \in T \) is a regular \(r' \)-element of \(G \), because \(B \) has inertial index one by Dade’s theorem. Thus (b) holds.

Suppose that \(B \) is a nonprincipal \(r \)-block. Then in any case for \(e \in \{1, 2, 3, 5, 12\} \) we have shown that the canonical character \(\Theta \) of a root \(b \) of \(B \) in \(C = C_{G_\alpha}(D) \) is of the form \(\Theta = e_T R_{T,3}^C \), where \(s \) is a regular \(r' \)-element of \(C \) contained in a cyclic torus \(T \). Furthermore, \(D \leq \ker \hat{s} \), where \(\hat{s} \) is the linear character of \(T \) corresponding to \(s \in T \). By Propositions 2.1 and 2.2 \(sy \) is a regular element of \(G_\alpha \) for each \(1 \neq y \in D \). Hence each \(\chi_{sy} = e_T R_{T,sy}^C \) with \(1 \neq y \in D \leq T \) is an irreducible character of \(G_\alpha \) by Lemma 3.1 and Corollary 7.3.5 of [2].

Two irreducible characters of \(G_\alpha \) belong to the same \(r \)-block of \(G_\alpha \) if they agree on all \(r' \)-elements, see [7, p. 150 and p. 179]. Thus all irreducible characters \(\chi_{sy} \), \(1 \neq y \in D \), belong to one \(r \)-block \(B_1 \) of \(G_\alpha \) by Lemma 5.5. Let \(D_1 \) be its cyclic defect group. For \(x \in D \chi_{sy}(x) = e_T R_{T,sy}^C \) by Lemmas 3.2 and 5.5, where

\[
\hat{s}(x) = \frac{1}{|C_{W(T)}(x)|} \sum_{w \in W(T)} \hat{s}(wxw^{-1}).
\]

As \(D \leq \ker \hat{s} \), \(\hat{s}(x) = |W(T): C_{W(T)}(x)| \neq 0 \) by Lemmas 3.4 and 3.5. Thus \(\chi_{sy}(x) \neq 0 \) for every \(x \in D \), and \(D = G_\alpha \) by Lemma 59.5 of [6] and (a). Let \(b_1 \) be a root of \(B_1 \) in \(C = C_{G_\alpha}(D) \). As shown above there is a regular element \(s_1 \) of \(T \) such that the canonical character of \(b_1 \) is of the form \(\Theta_1 = e_C e_T R_{T,3}^C \). Let \(\mathcal{H} \) be the Brauer homomorphism from the center \(ZF_G \) into \(ZFC \) with respect to \(D \). Let \(\omega_1 \) be the central character of \(\chi_{sy} \), and \(\omega_{s_1} \) the one of \(\Theta_1 \). As \(B_1 = b_1^{G_\alpha} \) it follows from Brauer’s extended first main theorem that \(\omega_1 = \omega_{s_1} \mathcal{H} \) on \(ZF_G \).

From [7, p. 144], we obtain for every \(r' \)-element \(x \in T \) that

\[
\frac{|x^{G_\alpha}| x_{sy}(x)}{\chi_{sy}(1)} \equiv \frac{|x^C| \Theta_1(x)}{\Theta_1(1)} \mod \pi R.
\]

Applying Lemma 3.2 and Theorem 7.5.1 of [2] we get

\[
\frac{|x^{G_\alpha}| e_{C_{G_\alpha}(x)} e_T C_G(x)|_p, s(x)}{|T| |G_\alpha : T|_p'} \equiv \frac{|x^C| e_{C(x)} e_T C_C(x)|_p, s_1(x)}{|T| |C : T|_p'}.
\]

Hence \(e_{C_{G_\alpha}(x)} |G_\alpha : C_G(x)|_p s(x) \equiv e_{C(x)} |C : C(x)|_p s_1(x) \). Corollary 6.5.7 of [2] and Proposition 2.2 assert that \(e_{C_{G_\alpha}(x)} = e_{C(x)} \) for all \(r' \)-elements \(x \in T \). Let \(C_1 = C_{W(T)}(x) \), and \(W_1 = W(T) \). Then

\[
\hat{s}(x) = \frac{1}{|C_1|} \sum_{w \in W_1} \hat{s}(wxw^{-1}) \equiv s_1(x) = \frac{1}{|C|} \sum_{w \in W} \hat{s}_1(wxw^{-1}).
\]

Since \(|T/D|, r \) = 1, and \(D \) is in the kernel of \(s \) and \(s_1 \), it follows that \(\hat{s} \) and \(\hat{s}_1 \) are \(W(T) \)-conjugate. Hence \(\Theta \) and \(\Theta_1 \) are \(N_{G_\alpha}(D) \)-conjugate, because \(W(T) = N_{G_\alpha}(D)/C_{G_\alpha}(D) \) by Proposition 1.2. Therefore \(B = B_1 \). Let \(t = |C_{W}(s)| \). Then \(t \) is
the inertial index of \(B \), and it follows from Dade's theorem [7, p. 177] that the
\((|D| - 1)t^{-1}\) irreducible characters \(\chi_{sy}, 1 \neq y \in D \), are the exceptional characters of \(B \).

If \(s \) is regular in \(G_o \), then \(\chi_s = \epsilon_r R_{T, s} \) is an irreducible character of \(G_o \), which by the previous argument belongs to \(B \). By Lemma 3.4 \(t = 1 \). Hence by Dade's theorem \(\chi_s \) is the only nonexceptional character of \(B \).

Suppose that \(s \) is not regular. Let \(e = 1 \). Then \(T = T_2 \) and \(s \in \{ s_{10}, s_9 \} \) by the proof of (b). \(B \) has inertial index \(t = 2 \) by Lemma 3.4. Let \(s = s_{10} \). Then by Theorem 4.3

\[
\chi_{s,1} = -\frac{1}{2}(R_{2,10} + R_{6,10}), \quad \chi_{s,St} = -\frac{1}{2}(R_{2,10} - R_{6,10}).
\]

Using Proposition 2.2 and Tables 3.6 and 4.4 it follows that \(|x^{G_o}|R_{6,10}(x)/\chi_{s,u}(1) \equiv 0 \mod \pi R \) for every \(r' \)-element \(x \) of \(G_o \). Let \(1 \neq y \in D \). Then \(\chi_{sy} \) belongs to \(B \). Since \(e = 1 \), \(v = \chi_{sy}(1)/2\chi_{s,u}(1) \equiv 1 \mod \pi R \) by Table 4.4. \(\chi_{sy}(x) = -R_{2,s}(x) \) for every \(r' \)-element \(x \in G_o \) by Theorem 4.3 and Lemma 5.5. Hence

\[
\frac{|x^{G_o}|\chi_{s,u}(x)}{\chi_{s,u}(1)} = u \frac{|x^{G_o}|\chi_{sy}(x)}{\chi_{sy}(1)} \equiv \frac{|x^{G_o}|\chi_{sy}(x)}{\chi_{sy}(1)}.
\]

Therefore \(\chi_{10,1} \) and \(\chi_{10,St} \) are the two nonexceptional characters of \(B \). Now let \(s = s_9 \). Then by Theorem 4.3

\[
\chi_{s,1} = -\frac{1}{8}(R_{6,9} + 3R_{2,9} + 2R_{4,9}), \quad \chi_{s,St} = \frac{1}{8}(R_{6,9} - 3R_{2,9} + 2R_{4,9}).
\]

Using Proposition 2.2 and Tables 3.6 and 4.4 it follows that

\[
|\frac{x^{G_o}|R_{6,9}(x)}{\chi_{s,u}(1)} \equiv 0 \equiv \frac{|x^{G_o}|R_{6,9}(x)}{\chi_{s,u}(1)} \mod \pi R
\]

for every \(r' \)-element \(x \) of \(G_o \). Applying the above argument again we see that \(\chi_{9,1} \) and \(\chi_{9,St} \) are the nonexceptional characters of \(B \).

Let \(e = 3 \). Then \(T = T_1 \) and \(s = s_7 \) by the proof of b). Now

\[
\chi_{s,1} = -\frac{1}{6}(R_{1,7} + R_{6,7}), \quad \chi_{s,St} = -\frac{1}{3}(R_{1,7} - R_{6,7})
\]

by Theorem 4.3. Using Proposition 2.2 and Tables 3.6 and 4.4 it follows that for every \(r' \)-element \(x \in G_o \)

\[
|\frac{x^{G_o}|R_{6,7}(x)}{\chi_{s,u}(1)}\equiv 0 \mod \pi R.
\]

Let \(1 \neq y \in D \). Then \(\chi_{sy} \) belongs to \(B \). Since \(e = 3 \),

\[
v = \frac{\chi_{sy}(1)}{2\chi_{s,u}(1)} = \frac{q^3 + 1}{2q^2} \equiv 1 \mod \pi R
\]

by Table 4.4, where \(n \in \{0, 3\} \). From Theorem 4.3 and Lemma 5.5 follows that \(\chi_{sy}(x) = -R_{1,s}(x) \) for every \(r' \)-element \(x \) of \(G_o \). Hence

\[
\frac{|x^{G_o}|\chi_{s,u}(x)}{\chi_{s,u}(1)} = u \frac{|x^{G_o}|\chi_{sy}(x)}{\chi_{sy}(1)} \equiv \frac{|x^{G_o}|\chi_{sy}(x)}{\chi_{sy}(1)}.
\]
Therefore χ_7 and $\chi_{7, St}$ are the two nonexceptional characters of B.

Replacing q by $-q$ the cases $e = 2, 6$ follow from the cases $e = 1, 3$, respectively.

Let β be the r-block of $C_{G_4}(s)$ containing the unipotent characters $s\chi_u$ corresponding to $\chi_{s,u}$ of B. Then $B = \beta^{C_{G_4}(s)}$ by [7, p. 136], because the linear character s of $T = C_{G_4}(s) \cap C_{G_4}(D)$ is the canonical character of β. Hence (d) holds.

Finally let B be the principal r-block. Then D is the Sylow r-subgroup of the Coxeter torus T_s. Therefore every element $1 \neq y \in D$ is regular by Propositions 2.1 and 2.2, and B has inertial index $i = 4$ by Proposition 1.2. Hence B has $\frac{1}{4}(|D| - 1)$ irreducible nonexceptional characters χ_y with $1 \neq y \in D$ by Lemma 5.5 and the proof of (b). Furthermore, the following 4 unipotent irreducible characters $1, St, \rho_1$ and $3D_4[-1]$ belong to B by Table 4.4. Hence by Dade's theorem we have found all the characters of B. This completes the proof.

Lemma 5.7. Let $r \not\in \{ p, 2, 3\}$, and let B be an r-block of $G_4 = 3D_4(q)$ with a noncyclic defect group D. Let $H = N_{G_4}(D)$. Then:

(a) $C_{G_4}(D) = T$ is a maximal torus of G_4.

(b) Up to G_4-conjugacy there exists a unique r'-element $s \in T$ and a root b of B in $C_{G_4}(D) = T$ such that the linear character s of T is the canonical character of B.

(c) Let $W(T)$ be the Weyl group of T. Then the inertial subgroup $T_H(b) = T(D \cdot C_{W(T)}(s))$, where $D \cdot C_{W(T)}(s)$ denotes the split extension of D by $C_{W(T)}(s)$ induced by the action of $W(T)$ on T.

(d) If B_1 is the Brauer correspondent of B in H, then its r-adic block ideal \hat{B}_1 is Morita equivalent to the group algebra $R[D \cdot C_{W(T)}(s)]$, and $k(B_1) = k_0(B_1) = k(S[D \cdot C_{W(T)}(s)]) = |D|$.

Proof. (a) As D is not cyclic, Lemma 5.2 asserts that D is an abelian Sylow r-subgroup of G_4. By Corollary 5.19 of [1, p. 212] and Proposition 2.2, $C_{G_4}(D) = T$ is a maximal torus of G_4.

(b) Let the r-block b of $C_{G_4}(D) = T$ be a root of B, and let $\Theta \in \text{Irr}_D(b)$ be the canonical character of B. Certainly Θ is a linear character of T. As $D \subseteq \ker\Theta$ there is up to H-conjugacy a unique element s of T such that $\Theta = s \in \text{Irr}_s(T)$. As $r \not\in \{2, 3, p\}$, it follows from Proposition 1.2 and the lemma of Schur and Zassenhaus that $D \cdot C_{W(T)}(s)$ is the split extension of D by $C_{W(T)}(s)$ induced by the action of $W(T)$ on T.

(d) Let $B' = b^{T_H(b)}$ be the block of $T_H(b)$ with the same block idempotent as b, and let \hat{B} be its r-adic block ideal. If \hat{B}_1 denotes the r-adic block ideal of the Brauer correspondent B_1 of B in H, then by Theorem 2.5 of [7, p. 197], the algebras \hat{B} and \hat{B}_1 are Morita equivalent, and $k(B') = k_0(B_1) = k_0(B_1)$.

It is easy to see that $\hat{B}' = R[D \cdot C_{W(T)}(s)]$. By Lemmas 3.4 and 3.5 $|C_{W(T)}(s)|$ divides 24. As D is abelian and $r \not\in \{2, 3\}$, it follows that $k(B') = k_0(B') = k(S[D \cdot C_{W(T)}(s)])$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Hence \(k(B_1) = k_0(B_1) \leq |D| \), the latter inequality follows by application of Lemmas 3.4 and 3.5 and the structure of the group algebra \(S[D \cdot C_{W(T)}(s)] \).

Proposition 5.8. Let \(B \) be an \(r \)-block of \(G_\sigma \) with a noncyclic abelian defect group \(D \). Then the following assertions hold:

(a) \(C_{G_\sigma}(D) = T \) is a maximal torus of \(G_\sigma \), and \(D \) is a Sylow \(r \)-subgroup of \(T \).

(b) Up to \(G_\sigma \)-conjugacy there exists a unique \(r' \)-element \(s \in T \) and a root \(b \) of \(B \) in \(C_{G_\sigma}(D) = T \) such that the linear character \(\hat{s} \) of \(T \) is the canonical character of \(B \).

(c) If \(H = N_{G_\sigma}(D) \), and \(T_H(b) \) denotes the inertial subgroup of \(b \) in \(H \), then \(T_H(b)/T = C_{W(T)}(s) \), where \(W(T) = N_{G_\sigma}(T)/T \).

(d) An irreducible character \(\chi_{t,u} \) of \(G_\sigma \) belongs to \(B \) if and only if \(t \sim G_\sigma s y \) for some \(y \in D \), and \(\chi_u \) is a unipotent irreducible character of \(C_{G_\sigma}(s y) \) such that \(s y \chi_u \) belongs to an \(r \)-block \(\beta \) of \(C_{G_\sigma}(s y) \) with \(B = \beta G_\sigma^* \).

(e) \(B \) is the principal \(r \)-block of \(G_\sigma \) if and only if \(s = 1 \) and \(r \geq 5 \).

(f) The number \(l(B) \) of modular irreducible characters of \(B \) equals the number of unipotent irreducible characters of \(C_{G_\sigma}(s) \), provided \(s \neq 1 \).

Proof. By Humphreys’ theorem [10] \(r \neq q \). If \(r \neq 3 \), then assertions (a), (b), and (c) hold by Proposition 5.3 and Lemmas 5.7 and 5.2.

Let \(r = 3 \). Then by Lemma 5.4 \(B \) is a Sylow 3-subgroup of a maximal torus \(T \) of \(G_\sigma \). As \(D \) is not cyclic, \(T \) is isomorphic to \(T_0, T_3, T_4, \) or \(T_6 \) by Proposition 1.2. From Corollary 5.19 of [1, p. 212], and Proposition 2.2 it follows that \(C_{G_\sigma}(D) = T \). Thus (a) holds, and (b) can now be shown as in Lemma 5.7. If \(\hat{s} \in \mathcal{T} \) denotes the canonical character of \(B \), then \(T_H(b) = T_H(\hat{s}) = \{ h \in H | s^h = s \} \). Hence (c) holds also for \(p = 3 \).

(e) is a consequence of (b) and Brauer’s third main theorem, because by Propositions 5.3 and 5.4 we may assume that \(r \geq 5 \).

(d) Fix \(s \in T = C_{G_\sigma}(D) \) such that its corresponding linear character \(\hat{s} \) of \(T \) is the canonical character of a block \(b \) of \(C_{G_\sigma}(D) \) satisfying \(B = b G_\sigma^* \). Then \(s \) is uniquely determined by \(B \) up to \(G_\sigma \)-conjugation and \(\text{Irr}_s(b) = \{ s y | y \in D \} \). Furthermore, \(D \leq \text{ker} \hat{s} \).

Let \(\mathcal{H} \) be the Brauer homomorphism with respect to \(D \) from \(ZFG_\sigma \) into \(ZFC_{G_\sigma}(D) \). As \(T = C_{G_\sigma}(D) \) and \(B = b G_\sigma^* \), Brauer’s extended first main theorem implies that on each \(r \)-regular conjugacy class \(x^{G_\sigma} \) of \(G_\sigma \) with defect group \(D \) the central linear character \(\lambda \) of \(B \) agrees with \(\tau(x) = 1/|C_{\mathcal{H}(x)}(D)| \sum_{w \in \mathcal{H}} \mathcal{H}(w x w^{-1}) \), where \(\mathcal{H} = H/T \). Since by (a) \(D \) is a Sylow \(r \)-subgroup of \(T \) it follows from Proposition 1.2 that \(W(T) = H/T \). Using now the notation introduced before Table 3.6 we obtain \(\tau(x) = N_{T, \hat{s}}(x) \). Therefore by [7, p. 144], an irreducible character \(\chi_{t,u} \) of \(G_\sigma \) belongs to \(B \) if and only if

\[
(*) \quad \frac{|x^{G_\sigma}|_{\chi_{t,u}(x)}}{\chi_{t,u}(1)} = N_{T, \hat{s}}(x) \mod R \text{ for every } r'-element } x \text{ of } T
\]

with defect group \(D \).

Suppose that the irreducible character \(\chi_{t,u} \) of \(G_\sigma \) belongs to \(B \). If \(f = f^2 \neq 0 \) denotes the block idempotent of \(B \), then \(\lambda(f) = 1 \in F \). By Lemma 7.2 of [7, p. 179] \(f \) is a linear combination of \(r \)-regular class sums of \(G_\sigma \). Therefore \(\chi_{t,u} \neq 0 \) for some
r'-element x. Hence $t \in T$ (up to G_σ-conjugacy) by Lemma 3.2 and Theorem 4.3. Let $t = zy = yz$, where $z \in T$ is r-regular and $y \in D$. By Lemma 5.5, $R_{T, \hat{z}}$ and $R_{T, z}$ agree on all r'-elements $x \in G_\sigma$, and D is in the kernel of $\hat{z} \in \hat{T}$.

As $q \neq 2$, we obtain from Theorem 4.3, Table 3.6, and Lemma 3.4 that for all unipotent irreducible characters χ_u in $C_{G_\sigma}(t)$ and all r'-elements $x \in T$ the following consequences hold mod πR.

$$x_{t,u}(1) \equiv \frac{1}{|C_{W(T)}(t)|} \epsilon_{T_i} \epsilon_{G_\sigma} \frac{|G_\sigma : T|_{p'}}{|C_{W(T)}(t)|}.$$

$$x_{t,u}(x) = \frac{\epsilon_{C(t)} \epsilon_T}{|C_{W(T)}(t)|} R_{T,i}(x).$$

Here we denote $C_{G_\sigma}(t)$ and $C_{G_\sigma}(x)$ by $C(t)$ and $C(x)$, respectively. Hence, using Lemma 3.2, one obtains

$$\frac{|x^{G_\sigma}| x_{t,u}(x)}{x_{t,u}(1)} = \frac{|G_\sigma : C(x)| \epsilon_{C(t)} \epsilon_T R_{T,i}(x) |C_{W(T)}(t)|}{|C_{W(T)}(t)| |G_\sigma : T|_{p'}}$$

$$= \frac{|G_\sigma : C(x)| \epsilon_{C(t)} \epsilon_T R_{T,i}(x)}{|C(x) : T|_{p'}}$$

$$= \frac{|G_\sigma : C(x)| \epsilon_{C(t)} \epsilon_T R_{T,i}(x)}{|C(x) : T|_{p'}}$$

$$= \frac{|G_\sigma : C(x)| \epsilon_{C(t)} \epsilon_T R_{T,i}(x)}{|T|_p}$$

$$= \epsilon_{C(t)} \epsilon_T R_{T,i}(x)$$

because $T \in \{ T_0, T_3, T_4, T_6 \}$, and therefore $\epsilon_{C(t)} \epsilon_{C(t)} = 1$, by Proposition 2.2. Since the right-hand side is independent of the unipotent irreducible character χ_u of $C(t)$, it follows that x_{t,u_1} and x_{t,u_2} belong to the same r-block B of G_σ, whenever χ_u and χ_u' are two unipotent irreducible characters of $C(t)$. Furthermore, $\mathcal{N}_{T,i}(x) \equiv \mathcal{N}_{T,\hat{z}}(x)$, because $R_{T,i} = R_{T,\hat{z}}$ and $R_{T,\hat{z}}$ agree on all r'-elements $x \in T$. Now $x_{t,u} \in B$ implies that $\mathcal{N}_{T,\hat{z}}(x) \equiv \mathcal{N}_{T,\hat{z}}(x) \mod \pi R$. Since D is in the kernels of \hat{s} and \hat{z}, and since D is the Sylow r-subgroup of T, it follows that z and s are $W(t)$-conjugate.

For every fixed G_σ-conjugacy class y^{G_σ} of G_σ meeting D let $s_{yG_\sigma} = \{ x_{sy,v} \}$, where x_u runs through all the unipotent irreducible characters of $C = C_{G_\sigma}(sy)$, and where \hat{s} denotes the canonical character of the root b of B in $T = C_{G_\sigma}(D)$. Observe that by Proposition 2.2 $C_{G_\sigma}(sy)$ does not contain any unipotent irreducible characters χ_u if and only if sy is a regular element of T; in this case $(sy)_{G_\sigma}$ consists only of the irreducible character $\chi_{sy} = \pm R_{T,\hat{s}}$ of G_σ. The above argument with zy replaced by sy shows that for a fixed sy all $x_{sy,v} \in \text{Irr}_S(B)$, where χ_u runs through all unipotent irreducible characters of $C = C_{G_\sigma}(sy)$. Thus we have shown that $\text{Irr}_S(B) = \bigcup_{y \in G_\sigma \Delta} (sy)$.
Let \(y \) be a representation of a conjugacy class \(yG° \) with \(yG° \cap D \neq \emptyset \). If \(sy \) is not regular, then Proposition 2.2 and the character tables of [6 and 13] imply that all unipotent irreducible characters \(\chi_u \) of \(C = C_{G_a}(sy) \) belong to the principal \(r \)-block of \(C \). Hence the irreducible characters \(\chi_u sy \) of \(C \) belong to an \(r \)-block \(\hat{B} \) of \(C \) with root \(b \) in \(T = C_G(D) \), because \(\hat{s} \) is a canonical character of \(\beta \). In particular, \(B = \beta G° \) by Brauer’s extended first main theorem. If \(sy \) is regular, then \(b = \{ sy \mid y \in D \} = \beta \) and \(C_{G_a}(sy) = T \). Hence \(B = \beta G° \). This completes the proof of (d).

(f) By (d) we know that \(B \) determines up to \(G_a \)-conjugacy a unique \(r' \)-element \(s \neq 1 \) of \(G_a \) representing the canonical character \(\hat{s} \) of \(B \) in \(T = C_G(D) \). The number of \(G_a \)-conjugacy classes of maximal tori \(T \) containing \(s \) equals by Proposition 2.2 the number \(|sG_a| \) of unipotent irreducible characters \(\chi_u \) of \(G_a(s) \). By Lemma 5.5 and Theorem 4.3 each irreducible character \(\chi_{t,u} \) of \(B \) restricted to the \(r' \)-elements is a linear combination of the \(R_T s \). Hence \(l(B) = |sG_a| \).

Theorem 5.9. Let \(B \) be an \(r \)-block of \(G_a = 3D_4(g) \) with defect group \(\delta(B) = G_a D \neq 1 \), where the prime \(r \) does not divide \(q \). Then the following assertions hold:

(a) \(C = DC_{G_a}(D) \) contains a maximal torus \(T \) such that \(H = N_{G_a}(D) \leq N_G(T) \).

(b) Up to \(G_a \)-conjugacy there exists a unique \(r' \)-element \(s \in T \) and a root \(b \) of \(B \) in \(C = DC_{G_a}(D) \) such that the linear character \(\hat{s} \) of \(T \) is the canonical character of \(B \).

(c) If \(T_H(b) \) denotes the inertial subgroup of \(b \) in \(H \), then \(T_H(b)/C = C_{W(T)}(s) \), where \(W(T) = N_G(T)/T \).

(d) \(B \) is the principal \(r \)-block of \(G_a \) if and only if \(s = 1 \) and \(D \) is a Sylow \(r \)-subgroup of \(G_a \).

(e) An irreducible character \(\chi_{t,u} \) of \(G_a \) belongs to \(B \) if and only if \(t \simeq G_a sy \) for some \(y \in D \), and \(\chi_u \) is a unipotent irreducible character of \(C_{G_a}(sy) \) such that \(sy \chi_u \) belongs to an \(r \)-block \(\beta \) of \(C_{G_a}(sy) \) with \(B = \beta G° \).

(f) The number \(l(B) \) of modular irreducible characters of \(B \) equals the number of unipotent irreducible characters of \(C_{G_a}(S) \), provided \(s \neq 1 \).

Proof. If the defect group \(D \) of \(B \) is cyclic or abelian, then all assertions hold by Propositions 5.6 and 5.8. Hence we may assume that \(D \) is not abelian. Thus \(r \in \{2, 3\} \) by Lemma 5.2. The proof of (f) is the same as in Proposition 5.8.

Suppose that \(r = 3 \), and that \(3 \mid q - 1 \). Then \(q \neq 2 \). By Proposition 5.4 \(D \) is a Sylow 3-subgroup of \(G_a \). Theorem 9.2 of [7, p. 231] asserts that there is a central element \(1 \neq x \in D \) of order 3 and a 3-block \(b_1 \) of \(C_1 = C_{G_a}(x) \) such that \(B = b_1 G° \), and \(b_1 \) has defect group \(\delta(b) = D \). From Proposition 2.2 and the proof of Proposition 5.4 it follows that \(C_1 = U \times Z \), where \(Z \) is a cyclic group of order \(k = \frac{1}{3}(q^2 + q + 1) \), and where \(U \) is a nonsplit extension of \(SL_3(q) \) by a cyclic group \(C_1/C_1' \) of order 3. In particular, each block \(b_1 \) is of the form \(b_1 = b_0 \otimes z \), where \(z \) denotes a 3-block of defect zero of \(Z \), and \(b_0 \) denotes the principal 3-block of \(U \). Because of the structure of \(C_1 \) we have \(C = DC_{G_a}(D) \leq C_1 \), and \(C \) contains a maximal torus \(T \supseteq Z \) such that \(T = G_a T_0 \), as \(3 \mid q - 1 \). Now \(D \) normalizes \(T \) by Corollary 5.19 of [1, p. 212]. Since \(D \cap T \) is a Sylow 3-subgroup of \(T \) and also the largest abelian normal subgroup of \(D \), it follows from Propositions 1.2 and 2.2 that \(H = N_{G_a}(D) \leq N_T(T) \).
The 3-block z of Z consists of one linear character \hat{s} of \hat{T}, because $Z \leq T$. As $Z \leq C = DC_{G_0}(D_1) \leq C_1$ and $b_1 = b_0 \otimes z$, it follows from Brauer's extended first main theorem that \hat{s} is the canonical character of a common root block b of B and b_1 in C. Certainly

$$T_H(b) = \left\{ h \in N_{G_0}(D) \mid s^h = s \right\} = \left\{ h \in N_{G_0}(T) \mid s^h = s \right\}$$

by Proposition 1.2. Therefore $T_H(b)/C \cong C_{W(T)}(s)$.

Since $b_1 = b_0 \otimes z$, and $z = \{\hat{s}\}$, it follows from Brauer’s third main theorem that $B = B_0$ is the principal 3-block of G_0 if and only if $s = 1$ and D is a Sylow 3-subgroup of G_0.

As shown in the proof of Proposition 5.4, the cyclic group C_1/C_1' of order 3 acts trivially on Z. Thus $y \in C_{G_0}(s)$ for every $y \in D$.

Let χ_u be a fixed unipotent irreducible character of $C_y = C_{G_0}(sy)$. Now $D \cap T'$ is a Sylow 3-subgroup of T' for every maximal torus $T' \subseteq C_y$ containing sy. Therefore the irreducible characters $\chi_{sy,u}$ of G_0 agree on all 3’-conjugacy classes of G_0 by the proof of Lemma 5.5 and Theorem 4.3, because $D \cap T' \subseteq \ker s$ and $s \in T'$. Hence Osima’s theorem and Lemma 4.2 of [7, p. 150], imply that all $\chi_{sy,u}$ with $y \in D$ belong to the same 3-block B' of G_0. By Proposition 2.2 the unipotent irreducible characters χ_u of C_y belong to the principal 3-block b_0^* of C_y. Hence by the structure of C_y the irreducible characters $sy\chi_u$ belong to one 3-block b_y of $C_y = C_{G_0}(sy)$ with defect group $D_2 = D \cap C_y$ and canonical character \hat{s}. As $C_{C_y}(D_2) \subseteq C_y$, Lemma 6.1 of [7, p. 209] asserts the existence of $(b_y)^{G_0}$, and $B = (b_y)^{G_0}$ by Brauer's extended first main theorem, because both blocks have the same canonical character. Applying now the proof of Proposition 5.8(d) we see that $B' = B$. Hence all irreducible characters $\chi_{sy,u}$ of G_0 such that $sy\chi_u$ belongs to a 3-block b_y of $C_{G_0}(sy)$ with $(b_y)^{G_0} = B$ are contained in B.

As $3 \mid q - 1$, it follows from Theorem 4.3 and Table 4.4 that B_0 contains the unipotent irreducible characters

$$U(B_0) = \left\{ 1, [\varepsilon_1], [\varepsilon_2], St, \rho_1, \rho_2, 3D_4[1] \right\}.$$

Since the order of the Sylow 3-subgroup P divides the degree of $3D_4[-1]$, this unipotent irreducible character belongs to a 3-block of G_0 with defect zero. Hence all other 3-blocks of G_0 with positive defect are not unipotent.

For every fixed G_0-conjugacy class $y_i^{G_0}$ of G_0 meeting D let $sy_{G_0} = \{\chi_{sy,u}\}$, where χ_u runs through all the unipotent irreducible characters of $C_y = C_{G_0}(sy)$. Let $y_1 = 1, y_2, \ldots, y_t$ be representatives of these conjugacy classes of 3-elements. As no y_i is conjugate to the involution s_2 it follows from Proposition 2.2 that $C_{y_i} = C_{G_0}(y_i) = C_{G_0}(y_i')$ for $i = 2, 3, \ldots, t$ provided sy_i is of type s_4 or s_5 and $s \neq 1$ or $s = 1$ and y_i is of type s_3, s_4, or s_5. In particular, the irreducible characters $sy_i\chi_u$ of C_{y_i} belong to one 3-block b_{y_i} of $C_{y_i} = C_{G_0}(y_i) = C_G(y_i)$ with $B = (b_{y_i})^{G_0}$, and the number of 3-modular characters of b_{y_i} is $l(b_{y_i}) = l(sy_i)G_0$ for $i = 2, 3, \ldots, t$, because no sy_i is regular by Propositions 2.1 and 2.2 and Table 4.4. An application of Theorem 68.4
of [6] now yields that the number of ordinary irreducible characters of B is
\[k(B) = \sum_{i=1}^{t} l(b_{\gamma_i}) = \sum_{i=1}^{t} |(s_{\gamma_i})_{G_a}|. \]
This completes the proof of (e) in the case $r = 3$ and $3 \mid q - 1$.

If $3 \mid q + 1$, then s_3, s_4, and s_5 are replaced by the representatives s_7, s_9, and s_{10}, respectively. Furthermore, it follows from Theorem 4.3 and Table 4.4 that the principal 3-block B_0 contains the unipotent irreducible characters $U(B_0) = \{1, [\varepsilon_1], [\varepsilon_2], St, p_2, 3D_4[-1], 3D_4[1]\}$, and in this case ρ_1 is of defect zero. With these changes the above argument applies in this case. Hence Theorem 5.9 holds for $r = 3$.

So we may assume that $r = 2$, and q is odd. With the notation of Proposition 5.3 it follows that D is one of the 2-groups P, $S \ast Z$, or S, where P is a Sylow 2-subgroup of G_a, S is a semidihedral group of order $|S| = 2^{a+2}$ and Z is a cyclic group of order $|Z| = 2^a$. Furthermore, by Propositions 1.2, 2.1, and 5.3 we may assume that $q = 1 \mod 4$, because the case $q = 3 \mod 4$ follows similarly.

Suppose that D is a semidihedral group of order $|D| = 2^{a+2}$, where 2^a is the highest power of 2 dividing $q - 1$. As D is a defect group of the 2-block B, Theorem 3.15 of [12] and the proof of Proposition 5.3 imply that $k(B) = 2^a + 4$, $k_0(B) = 4$, $k_1(B) = 2^a - 1$ and $k_v(B) = 1$, where $k_i(B)$ denotes the number of irreducible characters of B with highest i, and where $v = 2^a$. By Theorem 9.2 of [7, p. 231], there is a central element $1 \neq x \in D$ and a 2-block b_i of $C_i = C_{G_a}(x)$ such that $B = b_i^{G_a}$ and D is a defect group of b_1. Again by the proof of Proposition 5.3 we may assume that x is either of type s_7 or s_{10}. Let x be of type s_7. Then by Propositions 1.2 and 2.1 C_1 contains a maximal torus $T_1 \asymp Z((q^2 - 1)/(q + 1))$ such that $C = DC_{G_a}(D) \supseteq T_1$. Furthermore, there exists up to G_a-conjugacy a unique element $s \in T_1$ of odd order dividing $q + 1$ such that the linear character δ of T_1 is the canonical character of a common root block b of C of the blocks B and b_1. Each irreducible character $\chi_{sy,u}$ of G_a with $y \in D$ belongs to B by the proof of Proposition 5.8(d), Lemma 5.5, and Theorem 4.3. The center $Z(D)$ of D has order 4. Applying Propositions 1.2 and 2.2 and Lemma 3.4 we see that there are two conjugacy classes of G_a of the form sy with $y \in Z(D)$. As D is a Sylow 2-subgroup of $C_{G_a}(sy)$ for $y \in Z(D)$ it follows from Proposition 2.2 and Table 4.4 that each of the four irreducible characters $\chi_{sy,u}$ with $y \in Z(D)$ has height zero. Since $k_0(B) = 4$, all other irreducible characters of B have positive height. By Proposition 1.2 T_1 has a cyclic Sylow 2-subgroup $\langle y \rangle$ of order 2^{a+1}. Therefore $y^i \not\in Z(D)$ for $1 \leq i \leq 2^a - 1$. Proposition 2.1 and Table 4.4 assert that each element sy^i of T_1 is regular. Thus each irreducible character $\chi_{sy}^i, 1 \leq i \leq 2^a - 1$, of B has height 1 by Table 4.4. As $q \equiv 1 \mod 4$ the Sylow 2-subgroup of the maximal torus T_6 of G_a is a Klein four group by Proposition 1.2. Applying again Table 4.4 and Proposition 2.1, we see that there is a $y \in D$ such that sy is a regular element of T_6. Hence χ_{sy} is an irreducible character of B with height $v = 2^a$. Therefore we have found all irreducible characters of B. Replacing T_1 and s_7 by T_2 and s_{10}, respectively, the remaining case is proved similarly. Hence all assertions (a)-(e) hold for blocks B of G_a with a semidihedral defect group D, because the same arguments hold in the case $q \equiv 3 \mod 4$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Suppose that \(D = S \star Z \), where \(S \) is a semidihedral group of order \(|S| = 2^a+2\) and \(Z \) is a cyclic group of order \(|Z| = 2^a\). Let \(q \equiv 1 \mod 4 \). By Theorem 9.2 of \([7, p. 231]\), there is a central element \(1 \neq x \in D \) and a 2-block \(b_1 \) of \(C = C_{G_a}(x) \) such that \(B = b_1^{G_a} \) and \(D \) is a defect group of \(b_1 \). Again by proof of Proposition 5.3 we may assume that \(x \) is either of type \(s_3 \) or \(s_5 \). In both cases it follows that \(C_1 \) contains a maximal torus \(T_0 = \mathbb{Z}_q x^{-1} \times \mathbb{Z}_q x^{-1} \) such that \(C = DC_{G_a}(D) \supseteq T_0 \). Let \(x \) be of type \(s_3 \), and let \(b \) be a root of \(B \) and therefore of \(b_1 \) in \(C \). Then there exists up to \(G_a \)-conjugacy a unique element \(s \in T_0 \) of odd order dividing \(q - 1 \) and of type \(s_3 \) such that the linear character \(\delta \) of \(T_0 \) is the canonical character of \(B \). Applying again Lemma 5.5, Theorem 4.3, and the proof of Proposition 5.8(d) it follows that each irreducible character \(\chi_{s,v,u} \) of \(G_a \) with \(v \in D \) belongs to \(B \). Using now Proposition 2.2 and Theorem 68.4 of \([6]\) as in the case \(r = 3 \) it follows that we have found all irreducible characters of \(B \). The remaining cases \(x \sim G_a^s 5 \) and \(q \equiv 3 \mod 4 \) are dealt with similarly.

By Proposition 5.3 only the principal 2-block \(B_0 \) of \(G_a \) has a Sylow 2-subgroup \(P \) as a defect group. Furthermore, the above argument shows that each irreducible character \(\chi_{y,v,u} \) with \(y \in D \) belongs to \(B_0 \). Therefore all unipotent irreducible characters of \(G_a \) are contained in \(B_0 \). This completes the proof of Theorem 5.9.

As a first application of Theorem 5.9 we verify Brauer’s height zero conjecture in the case of the simple triality groups \(G_a = 3D_4(q) \).

Corollary 5.10. Let \(B \) be an \(r \)-block of \(G \) with defect group \(D \). Then every irreducible character \(\chi \) of \(G_a \) belonging to \(B \) has height zero if and only if \(D \) is abelian.

Proof. If \(r \nmid q \), then by Humphreys \([10]\) we may assume that \(B = B_0 \), the principal \(r \)-block of \(G_a \). The Sylow \(r \)-subgroup of \(G_a \) has order \(q^{12} \) and is not abelian. By Table 4.4, \(B_0 \) has unipotent irreducible characters of positive height. So we may suppose that \(r \nmid q \).

By Lemma 5.2 and Propositions 5.3 and 5.4 the \(r \)-block \(B \) has an abelian defect group \(D \) if and only if \(D \) is a Sylow \(r \)-subgroup of a maximal torus \(T \) of \(G_a \). Hence, if \(D \) is abelian, then Theorem 5.9 and Table 4.4 imply that all irreducible characters of \(B \) have height zero. Suppose that \(D \) is not abelian. Then \(r \in \{2, 3\} \) by Lemma 5.2. By Theorem 5.9(a) and (b) \(C = DC_{G_a}(D) \) contains a maximal torus \(T \) of \(G_a \) such that there is up to \(G_a \)-conjugacy a unique \(r' \)-element \(s \in T \) which corresponds to the canonical character of \(B \). In the proof of Theorem 5.9(e) we have shown that for every \(y \in D \) which is not \(G_a \)-conjugate to a central element of \(D \) the irreducible characters \(\chi_{s,v,u} \) of \(B \) have positive height. This completes the proof.

Brauer’s conjecture on the number \(k(B) \) of irreducible characters of an \(r \)-block \(B \) of \(G_a \) follows also.

Corollary 5.11. Let \(B \) be an \(r \)-block of \(G_a \) with defect group \(D \). Then \(k(B) \leq |D| \).

Proof. Since \(k(B) = 1 \) for every \(r \)-block of defect zero, we may assume that \(|D| \neq 1 \).

If \(r \nmid q \), then \(B \) is the principal block of \(G_a \) by \([10]\), and

\[
k(B) = \begin{cases}
q^4 + q^3 + q^2 + q + 4, & \text{if } 2 \mid q, \\
q^4 + q^3 + q^2 + q + 5, & \text{if } 2 \nmid q,
\end{cases}
\]
by Proposition 2.3. As $|D| = q^{12}$, we get $k(B) \leq |D|$.

Suppose that $r \nmid q$. If D is abelian, then D is a Sylow r-subgroup of a maximal torus T of G_α by Lemma 5.2, Proposition 5.3, and Proposition 5.4. Therefore Proposition 1.2 asserts that D can be generated by one or two elements. Thus $k(B) \leq |D|$ by Theorem 10.13 of [7, p. 316].

If D is nonabelian, then $r \in \{2, 3\}$ by Lemma 5.2. Let $r = 3$. Then $3 \nmid q$, and D is a Sylow 3-subgroup of G_α by Proposition 5.4. Suppose that 3^a is the highest power of 3 dividing $q - 1$. By Theorem 5.9 there is a semisimple 3'-element s of G_α such that each irreducible character χ of B is of the form $\chi = \chi_{s\gamma, u}$, where y is G_α-conjugate to an element of D, and where χ_u is a unipotent irreducible character of $C_{G_\alpha}(sy)$. Furthermore, $B = B_0$ if and only if $s = 1$. Since by the proof of Theorem 5.9 the principal 3-block B_0 has 7 unipotent irreducible characters, it follows from Proposition 2.2 and Theorem 5.9(e) that

$$k(B) = \begin{cases} 6 + 4 \cdot 3^a, & \text{if } s \neq 1, \\ 10 + 4 \cdot 3^a, & \text{if } s = 1. \end{cases}$$

In any case $k(B) \leq 3^{2+2a} = |D|$. The same argument applies, if $3 | q + 1$.

Let $r = 2$. Then $2 \nmid q$, and $D \in \{P, S \ast Z, S\}$ by Proposition 5.3, where P is a Sylow 2-subgroup of G_α of order $|P| = 2^{2+2a}$, S is a semidihedral group of order $|S| = 2^{a+2}$, and Z is a cyclic group of order $|Z| = 2^a$, and where 2^a is the highest power of 2 dividing $q - 1$ or $q + 1$. Furthermore, the principal 2-block B_0 is the only 2-block of highest defect, and it has 8 unipotent irreducible characters by the proof of Theorem 5.9(e). Another application of Proposition 2.2, Table 4.4, and Theorem 5.9(e) yields that for $2^a | q - 1$

$$k(B) = \begin{cases} 14 + 2^a & \text{if } D = G_\alpha P \text{ and } q = 3, \\ 14 + 2^{a+1} & \text{if } D = G_\alpha P \text{ and } q \neq 3, \\ 2 + 2^{a+1} & \text{if } D = G_\alpha S \ast Z, \\ 4 + 2^a & \text{if } D = G_\alpha S. \end{cases}$$

Hence $k(B) \leq |D|$ in any of these cases. If $2^a | q + 1$, then the assertion follows by a similar count for $k(B)$. This completes the proof.

We also can verify the Alperin-McKay conjecture for the simple triality groups.

Corollary 5.12. Let B be an r-block with defect group D of G_α. Let B_1 be the Brauer correspondent of B in $H = N_{G_\alpha}(D)$. Then $k_0(B) = k_0(B_1)$.

Proof. If $r = p | q$, then by [9] $k_0(B) = k_0(B_1)$, as was pointed out by Feit [7, p. 171].

Let $r \nmid q$. If D is abelian, then $k(B) = k_0(B)$ by Corollary 5.10. Furthermore, $k(B) = k(B_1)$ by Propositions 5.6 and 5.8 and Lemmas 3.4 it and 3.5. Using the proof of Lemma 5.7 it follows that $k_0(B_1) = k(B)$. Hence $k_0(B) = k_0(B_1)$.

Let D be nonabelian. If $r = 2$, then by the proof of Theorem 5.9 and Corollary 5.10 it follows (with the notation of Proposition 5.3) that

$$k_0(B) = k_0(B_1) = \begin{cases} 8 & \text{if } D = G_\alpha P, \\ |Z| & \text{if } D = G_\alpha S \ast Z, \\ 4 & \text{if } D = G_\alpha S. \end{cases}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
So we may assume that \(r = 3 \). As \(D \) is not abelian, it is a Sylow 3-subgroup of \(G_a \) by Proposition 5.4.

If \(q = 2 \), then \(G_a \) has only the principal 3-block \(B_0 \) as a 3-block of highest defect. By Table 4.4 and the proof of Theorem 5.9 the set of irreducible characters of \(B_0 \) with height zero is

\[
\text{Ir}r^0(B_0) = \{1, [e_1], [e_2], \text{St}, 3D_4[-1], 3D_4[1], x_{9,1}, x_{9, St}, x_{9, qs'}\},
\]

where \(s_a \) denotes a representative of order 3. As \(q = 2 \) it follows from Proposition 1.2, Lemma 3.5, and Theorem 5.9 that \(H = N_{G_a}(D) = N_{G_a}(T_6) \). Therefore \(H = U_3(2) \) by Proposition 2.2. Let \(b_0 \) be the principal 3-block of \(H \). Using the character table of Simpson and Frame \[1\] it follows that \(\text{Ir}r^0(b_0) = \{1, 1_1, 1_2, 2, 2_2, 8, 8_1, 8_2\} \), where the irreducible characters of \(H \) with height zero are denoted by their degrees. As \(B_1 = b_0 \) by Brauer's third main theorem, we obtain that \(k_0(B) = 9 = k_0(B_1) \).

Thus we may assume that \(q > 2 \). Hence either \(3|q - 1 \) or \(3|q + 1 \). Let \(3\mid q - 1 \). Since the number of 3-blocks with highest defect equals the number of 3-regular conjugacy classes with highest defect, it follows from Table 4.4 and Proposition 2.2 that \(G_a \) has the principal 3-block \(B_0 \) and \(\frac{1}{3}(q^2 + q - 2) \) many nonunipotent 3-blocks \(B \) with defect group \(\delta(B) = G_a \). Let \(B = B_0 \). By the proof of Theorem 5.9

\[
\text{Ir}r^0(B_0) = \{1, [e_1], [e_2], \text{St}, \rho_1, \rho_1, x_{4,1}, x_{4, St}, x_{4, qs'}\},
\]

where \(s_a \) denotes a representative of order 3. From Theorem 5.9, Proposition 1.2 and Lemma 3.4, it follows that \(H = N_{G_a}(D) = N_{G_a}(T_6) \) and \(H/T_6 = D_{12} \). Using the action of \(D_{12} \) on \(T_6 \) it is easy to see that the Brauer correspondent \(B_1 \) of \(B_0 \) has \(k_0(B_1) = k_0(b_0) = 9 \). Thus \(k_0(B_0) = 9 = k_0(B_1) \).

Now let \(B \) be a nonprincipal 3-block, and \(b \) its Brauer correspondent in \(H = N_{G_a}(D) = N_{G_a}(T_6) \). Then \(\text{Ir}r^0(B) = \{x_{4,1}, x_{4, St}, x_{4, qs}\} \), where \(s_a = yc \) with \(y \) an element of order 3 in the center of \(S L_3(q) \) and \(c \neq 1 \) a fixed representative of 3'-conjugacy class of the cyclic group \(S_a = Z_{q^2 + q + 1} \) described in Proposition 2.2. Also \(b \) is determined by the conjugacy class \(e_{H}^H \), as follows from Brauer's first main theorem. From Theorem 5.9(c) and Lemma 3.4 it follows that \(k_0(b) = k_0(B) \).

The remaining case \(3|q + 1 \) follows similarly, with \(q \) replaced by \((-q)\), which means replacing \(s_a \) by \(s_0 \) and \(\rho_1, \rho_2 \) by \(3D_4[-1], 3D_4[1] \), respectively. This completes the proof.

Acknowledgments. Both authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft of the Federal Republic of Germany, grant no. 89/8-1, enabling the first author to visit Essen University in the summer term 1984.

The second author thanks the Mathematics Institute of the University of Crete for its great hospitality during his stay there in September and October 1983.

As mentioned in the introduction, the proof of Theorem 3.2 required the use of the computer. All computer work was done by Dr. G. Schneider of Essen University. Both authors are very indebted to him for his great help.

The authors also received a lot of advice from N. Spaltenstein, and they obtained from R. W. Carter a copy of P. C. Gager's unpublished thesis, who first proved Proposition 1.2 in a slightly weaker form. Thanks are given to both of them.
They also thank J. C. Jantzen for information about his student Schewe’s work on the block distribution of the unipotent irreducible characters of the finite exceptional simple groups into r-blocks. In our case $G_o = ^3D_4(q)$ these results are consequences of Spaltenstein’s paper [14].

Finally we would like to thank the referee for several very helpful and illuminating suggestions.

References

Department of Mathematics, University of Crete, Iraklion, Crete, Greece
Department of Mathematics, University of Essen, 4300 Essen, Federal Republic of Germany

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use