Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Character table and blocks of finite simple triality groups $ \sp 3D\sb 4(q)$

Authors: D. I. Deriziotis and G. O. Michler
Journal: Trans. Amer. Math. Soc. 303 (1987), 39-70
MSC: Primary 20C15; Secondary 20C20, 20G40
MathSciNet review: 896007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Based on recent work of Spaltenstein [14] and the Deligne-Lusztig theory of irreducible characters of finite groups of Lie type, in this paper the character table of the finite simple groups $ {}^3{D_4}(q)$ is given. As an application we obtain a classification of the irreducible characters of $ {}^3{D_4}(q)$ into $ r$-blocks for all primes $ r > 0$. This enables us to verify Brauer's height zero conjecture, his conjecture on the bound of irreducible characters belonging to a give block, and the Alperin-McKay conjecture for the simple triality groups $ {}^3{D_4}(q)$. It also follows that for every prime $ r$ there are blocks of defect zero in $ {}^3{D_4}(q)$.

References [Enhancements On Off] (What's this?)

  • [1] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
  • [2] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
  • [3] R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc. (3) 37 (1978), no. 3, 491–507. MR 512022, 10.1112/plms/s3-37.3.491
  • [4] D. I. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 11, Universität Essen, Fachbereich Mathematik, Essen, 1984. MR 742140
  • [5] D. I. Deriziotis, On the number of conjugacy classes in finite groups of Lie type, Comm. Algebra 13 (1985), no. 5, 1019–1045. MR 780636, 10.1080/00927878508823204
  • [6] Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 7. MR 0347959
  • [7] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
  • [8] Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, 10.1007/BF01389188
  • [9] J. A. Green, G. I. Lehrer, and G. Lusztig, On the degrees of certain group characters, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 1–4. MR 0393216
  • [10] James E. Humphreys, Defect groups for finite groups of Lie type, Math. Z. 119 (1971), 149–152. MR 0285623
  • [11] George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
  • [12] Jørn Børling Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212–241. MR 0376841
  • [13] William A. Simpson and J. Sutherland Frame, The character tables for 𝑆𝐿(3,𝑞), 𝑆𝑈(3,𝑞²), 𝑃𝑆𝐿(3,𝑞), 𝑃𝑆𝑈(3,𝑞²), Canad. J. Math. 25 (1973), 486–494. MR 0335618
  • [14] N. Spaltenstein, Caractères unipotents de ³𝐷₄(𝐹_{𝑞}), Comment. Math. Helv. 57 (1982), no. 4, 676–691 (French). MR 694610, 10.1007/BF02565880
  • [15] F. D. Veldkamp, Roots and maximal tori in finite forms of semisimple algebraic groups, Math. Ann. 207 (1974), 301–314. MR 0333023

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C15, 20C20, 20G40

Retrieve articles in all journals with MSC: 20C15, 20C20, 20G40

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society