Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Polynomial approximation in the mean with respect to harmonic measure on crescents


Author: John Akeroyd
Journal: Trans. Amer. Math. Soc. 303 (1987), 193-199
MSC: Primary 30D55; Secondary 30E10, 41A10, 46E15, 47B38
MathSciNet review: 896016
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ 1 \leqslant s < \infty $ and "nice" crescents $ G$, this paper gives a necessary condition (Theorem 2.6) and a sufficient condition (Theorem 2.5) for density of the polynomials in the generalized Hardy space $ {H^s}(G)$. These conditions are easily tested and almost equivalent.


References [Enhancements On Off] (What's this?)

  • [1] James E. Brennan, Approximation in the mean by polynomials on non-Carathéodory domains, Ark. Mat. 15 (1977), no. 1, 117–168. MR 0450566
  • [2] T. Carleman, Fonctions quasi analytiques, Gauthier-Villars, Paris, 1926.
  • [3] J. A. Cima and A. Matheson, Approximation in the mean by polynomials, Rocky Mountain J. Math. 15 (1985), no. 3, 729–738. MR 813271, 10.1216/RMJ-1985-15-3-729
  • [4] John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
  • [5] T. W. Gamelin, Uniform algebras, 2nd ed., Chelsea, New York, 1984.
  • [6] S. N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math. Soc. Transl. (2) 19 (1962), 109–166. MR 0131561
  • [7] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D55, 30E10, 41A10, 46E15, 47B38

Retrieve articles in all journals with MSC: 30D55, 30E10, 41A10, 46E15, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0896016-X
Article copyright: © Copyright 1987 American Mathematical Society