Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the differentiability of Lipschitz-Besov functions


Author: José R. Dorronsoro
Journal: Trans. Amer. Math. Soc. 303 (1987), 229-240
MSC: Primary 46E35; Secondary 26B05
MathSciNet review: 896019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {L^r}$ and ordinary differentiability is proved for functions in the Lipschitz-Besov spaces $ B_a^{p,q},\;1 \leqslant p < \infty ,\;1 \leqslant q \leqslant \infty ,\;a > 0$, using certain maximal operators measuring smoothness. These techniques allow also the study of lacunary directional differentiability and of tangential convergence of Poisson integrals.


References [Enhancements On Off] (What's this?)

  • [Ad1] D. Adams, Lectures on $ {L^p}$ potential theory, Umea Univ. Reports, No. 2, 1981.
  • [Ad2] -, The classification problem for the capacities associated with the Besov and Triebel-Lizorkin spaces (preprint).
  • [AS] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. MR 0143935 (26:1485)
  • [BZ] T. Bagby and W. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129-148. MR 0344390 (49:9129)
  • [CS] A. P. Calderón and R. Scott, Sobolev type inequalities for $ p > 0$, Studia Math. 62 (1978), 75-92. MR 0487419 (58:7057)
  • [CZ] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 0136849 (25:310)
  • [CC1] C. Calderón, Lacunary spherical means, Illinois J. Math. 23 (1979), 476-486. MR 537803 (80m:42029)
  • [CC2] -, Lacunary differentiability of functions in $ {{\mathbf{R}}^n}$, J. Approx. Theory 40 (1984), 148-154. MR 732696 (85k:46031)
  • [CFR] C. P. Calderón, E. Fabes and N. Riviere, Maximal smoothing operators, Indiana Univ. Math. J. 23 (1974), 889-897. MR 0341058 (49:5808)
  • [DZ] D. Deignan and W. Ziemer, Strong differentiability properties of Bessel potentials, Trans. Amer. Math. Soc. 225 (1977), 113-122. MR 0422645 (54:10631)
  • [DVS] R. Devore and R. Sharpley, Maximal operators and smoothness, Mem. Amer. Math. Soc. No. 293, 1984. MR 727820 (85g:46039)
  • [Do] J. Dorronsoro, Poisson integrals of regular functions, Trans. Amer. Math. Soc. 297 (1986), 669-685. MR 854092 (88g:31013)
  • [FZ] H. Federer and W. Ziemer, The Lebesgue set of a function whose distribution derivatives are $ p$-th power summable, Indiana Univ. Math. J. 22 (1972), 139-158. MR 0435361 (55:8321)
  • [My] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue spaces, Math. Scand. 26 (1970), 255-292. MR 0277741 (43:3474)
  • [Mz] Y. Mizuta, On the boundary limits of harmonic functions with gradient in $ {L^p}$, Ann. Inst. Fourier (Grenoble) 34 (1984), 99-109. MR 743623 (85f:31009)
  • [NRS] A. Nagel, W. Rudin and J. Shapiro, Tangential boundary behavior of functions in Dirichlet type spaces, Ann. of Math. (2) 116 (1982), 331-360. MR 672838 (84a:31002)
  • [NS] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106. MR 761764 (86a:42026)
  • [N1] C. Neugebauer, Strong differentiability of Lipschitz functions, Trans. Amer. Math. Soc. 240 (1978), 295-306. MR 489599 (80c:26002)
  • [N2] -, Smoothness of Bessel potentials and Lipschitz functions, Indiana Univ. Math. J. 26 (1977), 585-591. MR 0440359 (55:13234)
  • [St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [Sto] B. Stocke, Differentiability properties of Bessel potentials and Besov functions, Ark. Math. 22 (1984), 269-286. MR 765414 (86b:46050)
  • [T] M. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $ n$-space. I, J. Math. Mech. 13 (1964), 407-479. MR 0163159 (29:462)
  • [Tr] H. Triebel, Theory of function spaces, Birkhäuser, 1983. MR 730762 (85k:46020)
  • [Z] A. Zygmund, Trigonometric series, Cambridge Univ. Press, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35, 26B05

Retrieve articles in all journals with MSC: 46E35, 26B05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0896019-5
PII: S 0002-9947(1987)0896019-5
Article copyright: © Copyright 1987 American Mathematical Society