Riccati techniques and variational principles in oscillation theory for linear systems

Authors:
G. J. Butler, L. H. Erbe and A. B. Mingarelli

Journal:
Trans. Amer. Math. Soc. **303** (1987), 263-282

MSC:
Primary 34C10; Secondary 34A30, 34C29

DOI:
https://doi.org/10.1090/S0002-9947-1987-0896022-5

MathSciNet review:
896022

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the seond order differential system , where , are matrices with a continuous symmetric matrix-valued function, . We obtain a number of sufficient conditions in order that all prepared solutions of are oscillatory. Two approaches are considered, one based on Riccati techniques and the other on variational techniques, and involve assumptions on the behavior of the eigenvalues of (or of its integral). These results extend some well-known averaging techniques for scalar equations to system .

**[1]**K. Akiyama,*On the maximum eigenvalue conjecture for the oscillation of second order differential systems*, M. Sc. Thesis, Univ. of Ottawa, Canada, 1983.**[2]**W. Allegretto and L. Erbe,*Oscillation criteria for matrix differential inequalities*, Canad. Math. Bull.**16**(1973), 5-10. MR**0322263 (48:625)****[3]**F. V. Atkinson, H. G. Kaper and M. K. Kwong,*An oscillation criterion for linear second-order differential systems*, Proc. Amer. Math. Soc.**94**(1985), 91-96. MR**781063 (86h:34028)****[4]**G. J. Butler and L. H. Erbe,*Oscillation results for second order differential systems*, SIAM J. Math. Anal.**17**(1986), 19-29. MR**819208 (87h:34045)****[5]**-,*Oscillation results for self-adjoint differential systems*, J. Math. Anal. Appl.**115**(1986), 470-481. MR**836240 (87f:34032)****[6]**R. Byers, B. J. Harris and M. K. Kwong,*Weighted means and oscillation conditions for second order matrix differential equations*, J. Differential Equations**61**(1986), 164-177. MR**823400 (87f:34033)****[7]**W. A. Coppel,*Stability and asymptotic behavior of differential equations*, Heath, Boston, Mass., 1965. MR**0190463 (32:7875)****[8]**G. J. Etgen and R. T. Lewis,*Positive functionals and oscillation criteria for second order differential systems*, Proc. Edinburgh Math. Soc.**22**(1979), 277-290. MR**560991 (81b:34051)****[9]**W. B. Fite,*Concerning the zeros of the solutions of certain differential equations*, Trans. Amer. Math. Soc.**19**(1918), 341-352. MR**1501107****[10]**S. Halvorsen and A. B. Mingarelli, preprint, 1984.**[11]**P. Hartman,*Oscillation criteria for self-adjoint second order differential systems and "Principal sectional curvatures"*, J. Differential Equations**34**(1979), 326-338. MR**550049 (81a:34034)****[12]**-,*Ordinary differential equations*, Wiley, New York, 1964. MR**0171038 (30:1270)****[13]**D. B. Hinton and R. T. Lewis,*Oscillation theory of generalized second order differential equations*, Rocky Mountain J. Math**10**(1980), 751-766. MR**595103 (82c:34039)****[14]**M. K. Kwong and H. G. Kaper,*Oscillation of two-dimensional linear second order differential systems*, J. Differential Equations**56**(1985), 195-205. MR**774162 (86j:34032)****[15]**M. K. Kwong and A. Zettl,*A new approach to second order linear oscillation theory*, Proc. Conf. Ordinary Differential Equations and operators (Dundee, 1982), Lecture Notes in Math., vol. 1032, Springer, Berlin and New York, 1983, pp. 328-345. MR**742647 (85k:34074)****[16]**-,*Integral inequalities and second order linear oscillation*, J. Differential Equations**45**(1982), 16-33. MR**662484 (83i:34034)****[17]**M. K. Kwong, H. G. Kaper, K. Akiyama and A. B. Mingarelli,*Oscillation of second order differential systems*, Proc. Amer. Math. Soc.**91**(1984), 85-91. MR**735570 (85g:34027)****[18]**A. B. Mingarelli,*On a conjecture for oscillation of second order differential systems*, Proc. Amer. Math. Soc.**82**(1981), 593-598. MR**614884 (82j:34028)****[19]**-,*An oscillation criterion for second order self-adjoint differential systems*, C. R. Math. Rep. Acad. Sci. Canada**2**(1980), 287-290. MR**600563 (82b:34042)****[20]**R. A. Moore,*The behavior of solutions of a linear differential equation of second order*, Pacific J. Math.**5**(1955), 125-145. MR**0068690 (16:925b)****[21]**C. Olech, Z. Opial and T. Ważewski,*Sur le problème d'oscillation des intégrales de l'équation*, Bull. Acad. Polon. Sci. Cl. III**5**(1957), 621-626. MR**0089312 (19:650e)****[22]**B. N. Parlett,*The symmetric eigenvalue problem*, Prentice-Hall, Englewood Cliffs, N.J., 1980. MR**570116 (81j:65063)****[23]**M. Rab,*Kriterien fur die Oszillation der Lösungen der Differentialgleichung*, Časobis. Pěst. Mat.**84**(1959), 335-370. MR**0114964 (22:5773)****[24]**C. A. Swanson,*Comparison and oscillation theory of linear differential equations*, Academic Press, New York, 1968. MR**0463570 (57:3515)****[25]**E. C. Tomastik,*Oscillation of systems of second order differential equations*, J. Differential Equations**9**(1971), 436-442. MR**0274863 (43:621)****[26]**T. Walters,*A characterization of positive linear functionals and oscillation criteria for matrix differential equations*, Proc. Amer. Math. Soc.**78**(1980), 198-202. MR**550493 (81a:34037)****[27]**D. Willett,*Classification of second order linear differential equations with respect to oscillation*, Adv. in Math.**3**(1969), 594-623. MR**0280800 (43:6519)****[28]**-,*On the oscillatory behavior of the solutions of second order linear differential equations*, Ann. Polon. Math.**21**(1969), 175-194. MR**0249723 (40:2964)****[29]**A. Wintner,*A criterion of oscillatory stability*, Quart. Appl. Math.**7**(1949), 115-117. MR**0028499 (10:456a)****[30]**J. S. W. Wong,*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197-215. MR**0251305 (40:4536)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34C10,
34A30,
34C29

Retrieve articles in all journals with MSC: 34C10, 34A30, 34C29

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0896022-5

Keywords:
Oscillation,
Riccati equation,
variational techniques

Article copyright:
© Copyright 1987
American Mathematical Society