Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Riccati techniques and variational principles in oscillation theory for linear systems


Authors: G. J. Butler, L. H. Erbe and A. B. Mingarelli
Journal: Trans. Amer. Math. Soc. 303 (1987), 263-282
MSC: Primary 34C10; Secondary 34A30, 34C29
MathSciNet review: 896022
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the seond order differential system $ (1)\,Y'' + Q(t)Y = 0$, where $ Q$, $ Y$ are $ n \times n$ matrices with $ Q = Q(t)$ a continuous symmetric matrix-valued function, $ t \in [a,\, + \infty ]$. We obtain a number of sufficient conditions in order that all prepared solutions $ Y(t)$ of $ (1)$ are oscillatory. Two approaches are considered, one based on Riccati techniques and the other on variational techniques, and involve assumptions on the behavior of the eigenvalues of $ Q(t)$ (or of its integral). These results extend some well-known averaging techniques for scalar equations to system $ (1)$.


References [Enhancements On Off] (What's this?)

  • [1] K. Akiyama, On the maximum eigenvalue conjecture for the oscillation of second order differential systems, M. Sc. Thesis, Univ. of Ottawa, Canada, 1983.
  • [2] W. Allegretto and L. Erbe, Oscillation criteria for matrix differential inequalities, Canad. Math. Bull. 16 (1973), 5-10. MR 0322263 (48:625)
  • [3] F. V. Atkinson, H. G. Kaper and M. K. Kwong, An oscillation criterion for linear second-order differential systems, Proc. Amer. Math. Soc. 94 (1985), 91-96. MR 781063 (86h:34028)
  • [4] G. J. Butler and L. H. Erbe, Oscillation results for second order differential systems, SIAM J. Math. Anal. 17 (1986), 19-29. MR 819208 (87h:34045)
  • [5] -, Oscillation results for self-adjoint differential systems, J. Math. Anal. Appl. 115 (1986), 470-481. MR 836240 (87f:34032)
  • [6] R. Byers, B. J. Harris and M. K. Kwong, Weighted means and oscillation conditions for second order matrix differential equations, J. Differential Equations 61 (1986), 164-177. MR 823400 (87f:34033)
  • [7] W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, Mass., 1965. MR 0190463 (32:7875)
  • [8] G. J. Etgen and R. T. Lewis, Positive functionals and oscillation criteria for second order differential systems, Proc. Edinburgh Math. Soc. 22 (1979), 277-290. MR 560991 (81b:34051)
  • [9] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341-352. MR 1501107
  • [10] S. Halvorsen and A. B. Mingarelli, preprint, 1984.
  • [11] P. Hartman, Oscillation criteria for self-adjoint second order differential systems and "Principal sectional curvatures", J. Differential Equations 34 (1979), 326-338. MR 550049 (81a:34034)
  • [12] -, Ordinary differential equations, Wiley, New York, 1964. MR 0171038 (30:1270)
  • [13] D. B. Hinton and R. T. Lewis, Oscillation theory of generalized second order differential equations, Rocky Mountain J. Math 10 (1980), 751-766. MR 595103 (82c:34039)
  • [14] M. K. Kwong and H. G. Kaper, Oscillation of two-dimensional linear second order differential systems, J. Differential Equations 56 (1985), 195-205. MR 774162 (86j:34032)
  • [15] M. K. Kwong and A. Zettl, A new approach to second order linear oscillation theory, Proc. Conf. Ordinary Differential Equations and operators (Dundee, 1982), Lecture Notes in Math., vol. 1032, Springer, Berlin and New York, 1983, pp. 328-345. MR 742647 (85k:34074)
  • [16] -, Integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), 16-33. MR 662484 (83i:34034)
  • [17] M. K. Kwong, H. G. Kaper, K. Akiyama and A. B. Mingarelli, Oscillation of second order differential systems, Proc. Amer. Math. Soc. 91 (1984), 85-91. MR 735570 (85g:34027)
  • [18] A. B. Mingarelli, On a conjecture for oscillation of second order differential systems, Proc. Amer. Math. Soc. 82 (1981), 593-598. MR 614884 (82j:34028)
  • [19] -, An oscillation criterion for second order self-adjoint differential systems, C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 287-290. MR 600563 (82b:34042)
  • [20] R. A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125-145. MR 0068690 (16:925b)
  • [21] C. Olech, Z. Opial and T. Ważewski, Sur le problème d'oscillation des intégrales de l'équation $ y'' + q(t)y = 0$, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 621-626. MR 0089312 (19:650e)
  • [22] B. N. Parlett, The symmetric eigenvalue problem, Prentice-Hall, Englewood Cliffs, N.J., 1980. MR 570116 (81j:65063)
  • [23] M. Rab, Kriterien fur die Oszillation der Lösungen der Differentialgleichung $ (p(x)y' )' + q(x)y = 0$, Časobis. Pěst. Mat. 84 (1959), 335-370. MR 0114964 (22:5773)
  • [24] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968. MR 0463570 (57:3515)
  • [25] E. C. Tomastik, Oscillation of systems of second order differential equations, J. Differential Equations 9 (1971), 436-442. MR 0274863 (43:621)
  • [26] T. Walters, A characterization of positive linear functionals and oscillation criteria for matrix differential equations, Proc. Amer. Math. Soc. 78 (1980), 198-202. MR 550493 (81a:34037)
  • [27] D. Willett, Classification of second order linear differential equations with respect to oscillation, Adv. in Math. 3 (1969), 594-623. MR 0280800 (43:6519)
  • [28] -, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math. 21 (1969), 175-194. MR 0249723 (40:2964)
  • [29] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117. MR 0028499 (10:456a)
  • [30] J. S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. MR 0251305 (40:4536)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10, 34A30, 34C29

Retrieve articles in all journals with MSC: 34C10, 34A30, 34C29


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0896022-5
PII: S 0002-9947(1987)0896022-5
Keywords: Oscillation, Riccati equation, variational techniques
Article copyright: © Copyright 1987 American Mathematical Society