CONJUGACY CLASSES IN ALGEBRAIC MONOIDS

MOHAN S. PUTCHA

ABSTRACT. Let M be a connected linear algebraic monoid with zero and a reductive group of units G. The following theorem is established.

THEOREM. There exist affine subsets M_1, \ldots, M_k of M, reductive groups G_1, \ldots, G_k with anti-automorphisms θ_i, surjective morphisms $\theta_i : M_i \rightarrow G_i$, such that: (1) Every element of M is conjugate to an element of some M_i, and (2) Two elements a, b in M_i are conjugate in M if and only if there exists $x \in G_i$ such that $x\theta_i(a)x^* = \theta_i(b)$. As a consequence, it is shown that M is a union of its inverse submonoids.

Introduction. The objects of study in this paper are connected linear algebraic monoids M with zero. This means by definition that the underlying set of M is an irreducible affine variety and that the product map is a morphism (i.e., a polynomial map). We will further assume that the group of units G of M is reductive. This means [1, 3] that the unipotent radical of G is trivial. Then by [6, 10], M is unit regular, i.e., $M = E(M)G$ where $E = E(M) = \{ e \in M | e^2 = e \}$. In this paper we study the conjugacy classes of M. An initial study was made by the author [8], where the general problem was reduced to nilpotent elements. The approach here is quite different, yielding a more complete answer. To be precise, we show that there exist affine subsets M_1, \ldots, M_k of M, reductive groups G_1, \ldots, G_k with anti-automorphisms θ_i, surjective morphisms $\theta_i : M_i \rightarrow G_i$, $i = 1, \ldots, k$, such that: (1) Every element of M is conjugate to an element of some M_i, and (2) If $a, b \in M_i$, then a is conjugate to b in M if and only if there exists $x \in G_i$ such that $x\theta_i(a)x^* = \theta_i(b)$. As an application of this result, we show that M is a union of its inverse submonoids. An inverse semigroup is a semigroup S with the property that for each $a \in S$, there exists a unique $\bar{a} \in S$ such that $a\bar{a}a = a$ and $\bar{a}a\bar{a} = \bar{a}$. See [2]. Finally in §3, we use our main results to briefly analyze the conjugacy classes of nilpotent elements.

1. Preliminaries. Throughout this paper Z^+ will denote the set of all positive integers and K an algebraically closed field. Let G be a connected linear algebraic group defined over K. The radical $R(G)$ is the maximal closed connected normal solvable subgroup of G and the unipotent radical $R_u(G)$ is the group of unipotent elements of $R(G)$. We will assume throughout that G is a reductive group, i.e., $R_u(G) = 1$. Then $R(G) \subseteq C(G)$, the center of G. Moreover $G = R(G)G_0$ where $G_0 = (G, G)$ is a semisimple group, i.e. $R(G_0) = 1$. Also [3, Theorem 27.5] G_0 is a product of the simple closed normal subgroups of G. In particular we have the following.

Received by the editors November 3, 1986.
FACT 1.1. If H is a closed normal subgroup G, then $G = H C_G(H)$. If H_1, H_2, H'_1, H'_2 are closed normal subgroups of G with $G = H_1 H_2 = H'_1 H'_2$ then

$$G = (H_1 \cap H'_1)(H_1 \cap H'_2)(H_2 \cap H'_1)(H_2 \cap H'_2) R(G).$$

A connected diagonalizable subgroup of G is called a torus. Let T be a maximal torus of G. Then

$$R(G) \subseteq C(G) \subseteq C_G(T) = T.$$

$W = N_G(T)/T$ is called the Weyl group of G and is finite. A maximal closed connected solvable subgroup of G is called a Borel subgroup. Let B_1, B_2 be Borel subgroups of G with $T \subseteq B_1 \cap B_2$. Then [3, Theorem 28.3] G is expressible as the following disjoint union:

$$G = \bigcup_{\sigma \in W} B_1 \sigma B_2.$$

This is called the Bruhat decomposition of G. A subgroup of G containing a Borel subgroup is called parabolic. Let P be a parabolic subgroup of G with $T \subseteq P$. Then there exists a parabolic subgroup P^- of G such that $T \subseteq P^-$ and $L = P \cap P^-$ is a reductive group. P^- is called the opposite parabolic subgroup of P relative to T and L is called a Levi factor of P. If $U = R_u(P)$, then [1, 3], $P = LU$ is a semidirect product. This is called the Levi decomposition of P. By Fact 1.1, we have

FACT 1.2. Let $G = G_1 G_2$ where G_1, G_2 are closed connected normal subgroups of G. Let P be a parabolic subgroup of G. Then $P_i = P \cap G_i$ is a parabolic subgroup of G_i ($i = 1, 2$) and $P = P_1 P_2$. If $P = LU$ is a Levi decomposition of P, then $P_1 = L_1 U_1$, $L = L_1 L_2$, $U = U_1 U_2$, where $L_i = L \cap G_i$, $U_i = U \cap G_i$, $i = 1, 2$.

The following result follows from [1, Theorem 28.7].

FACT 1.3. Let P, Q be parabolic subgroups of G with Levi decompositions, $P = L_1 U_1$, $Q = L_2 U_2$ such that $T \subseteq L_1 \cap L_2$. Then

$$P \cap Q = (U_1 \cap U_2)(U_1 \cap L_2)(L_1 \cap U_2)(L_1 \cap L_2).$$

By a (linear) algebraic monoid, we mean a monoid M such that the underlying set is an affine variety and the product map is a morphism. The identity component of M is denoted by M^e. We will assume that M is connected (i.e. $M = M^e$) and that M has a zero. We will further assume that the group of units G of M is reductive. Then by [6, 10], M is unit regular, i.e. $M = E(M) G$. Here $E(M)$ is the idempotent set of M. We fix a maximal torus T of G. We fix a maximal torus T of G. If $\Gamma \subseteq E(T)$, then we let

$$C_G^\Gamma(\Gamma) = \{a \in G|ae = eae \text{ for all } e \in \Gamma\},$$

$$C_G^\Gamma(\Gamma) = \{a \in G|ea = eae \text{ for all } e \in \Gamma\}.$$

Then $C_G(\Gamma) = C_G^\Gamma(\Gamma) \cap C_G^\Gamma(\Gamma)$ is a reductive group. If $e \in E(T)$, then by [5, 7], $C_G^E(e) \cap C_G^L(e)$ are opposite parabolic subgroups of G. We let

$$G^e_c = \{a \in G|ae = e\}^c,$$

$$G^l_e = \{a \in G|ea = e\}^c.$$

$$G^e_c = \{a \in G|ae = ea\} = G^e_c \cap C_G(e),$$

$$G^l_e = \{a \in G|ae = ea\} = \epsilon.$$

Since $G^e \triangleleft C_G(e)$, we have by Fact 1.1,

$$C_G(e) = G^e C_G(G^e).$$
In particular, $\hat{G}_e = G_e \hat{T}_e$. Now $eC_G(e)$ is the group of units of eMe by [4]. In particular, $eC_G^l(e) = eC_G(e)$. Hence we have the surjective homomorphism: $a \to ea$ from $C^l_G(e)$ onto the reductive group $eC_G(e)$. Thus

$$Ru(C^l_G(e)) \subseteq G_e^r \triangleleft C^l_G(e).$$

Similarly

$$Ru(C^r_G(e)) \subseteq G^r_e \triangleleft C^r_G(e).$$

Since $C^r_G(e) = Ru(C^r_G(e))C_G(e)$, we get

$$G^r_e = Ru(C^r_G(e))G_e.$$

LEMMA 1.4. Let $e, f \in E(T)$. Then

$$C_G(e, f) = (G_e \cap G_f)(G_f \cap C_G(T_e))(G_e \cap C_G(T_f))C_G(T_e, T_f).$$

PROOF. Now $C_G^l(f) \cap C_G(e)$ is a parabolic subgroup of $C_G(e)$ with Levi factor $C_G(e, f)$. Since $C_G(e) = G_eC_G(G_e)$, we have by Fact 1.2,

$$C_G(e, f) = [C_G(f) \cap G_e][C_G(f) \cap C_G(G_e)].$$

Similarly

$$C_G(e, f) = [C_G(e) \cap G_f][C_G(e) \cap C_G(G_f)].$$

Since $C_G(G_e) \subseteq C_G(T_e)$, $C_G(G_f) \subseteq C_G(T_f)$, we are done by Fact 1.1.

LEMMA 1.5. Let $e, f \in E(T)$. Then

(i) $G^r_e \cap C^r_G(f) = [G^r_e \cap C_G(T_f)][G^r_e \cap G^r_f],$

(ii) $G^r_e \cap C^l_G(f) = [G^r_e \cap C_G(T_f)][G^r_e \cap G^l_f].$

PROOF. We prove (i), as the proof of (ii) is similar. By Fact 1.3,

$$C^r_G(e) \cap C^r_G(f) = [Ru(C^r_G(e)) \cap C^r_G(f)][C_G(e) \cap C_G(f)].$$

Since $Ru(C^r_G(e)) \subseteq G^r_e$, we obtain

$$G^r_e \cap C^r_G(f) = [Ru(C^r_G(e)) \cap C^r_G(f)][G_e \cap C^r_G(f)].$$

By Facts 1.2, 1.3,

$$Ru(C^r_G(e)) \cap C^r_G(f) = [Ru(C^r_G(e)) \cap C^r_G(f)][Ru(C^r_G(e)) \cap C^r_G(f)]$$

$$\subseteq [G^r_e \cap G^r_f][Ru(C^r_G(e)) \cap G_f][Ru(C^r_G(e)) \cap C_G(G_f)]$$

$$\subseteq [G^r_e \cap G^r_f][G^r_e \cap C_G(T_f)].$$

Now $C_G(e) \cap C^r_G(f)$ is a parabolic subgroup of $C_G(e)$ with Levi decomposition

$$[C_G(e, f)][Ru(C^r_G(f)) \cap C_G(e)].$$

So by Fact 1.2,

$$G_e \cap C^r_G(f) = [G_e \cap C_G(f)][G_e \cap Ru(C^r_G(f))]$$

$$\subseteq [G_e \cap C_G(f)][G^r_e \cap G^r_f].$$

By Lemma 1.4,

$$C_G(e, f) = (C_G(e) \cap G_f)(C_G(e) \cap C_G(T_f)).$$

Since $G_e \cap C_G(f) \triangleleft C_G(e, f)$ and since the radical of $G_e \cap C_G(f)$ is contained in $T_e \subseteq G_e \cap C_G(T_f)$, we obtain

$$G_e \cap C_G(f) = (G_e \cap G_f)(G_e \cap C_G(T_f)).$$

Since $G^r_e \cap G^r_f \triangleleft G^r_e \cap C^r_G(f)$, the result follows.
LEMMA 1.6. Let $e \in E(\overline{T})$. Then $C_G(T_e) = T_e C_G(G_e)$.

PROOF. Since $G_e \triangleleft C_G(e)$, $C_G(G_e) \subseteq C_G(T_e) \subseteq C_G(e) = G_e C_G(G_e)$.

So $C_G(T_e) = C_G(G_e)[G_e \cap C_G(T_e)] = C_G(G_e) T_e$.

LEMMA 1.7. Let $e, f \in E(\overline{T})$. Then $C_G^r(e) \cap C_G^l(f) = [G^r_e \cap C_G(T_f)] [C_G(T_e, T_f)] [G^l_f \cap C_G(T_e)] [G^r_e \cap G^l_f]$.

PROOF. By Fact 1.3, $C_G^r(e) \cap C_G^l(f) = [G^r_e \cap G^l_f] [G^r_e \cap C_G(f)] [C_G(e) \cap G^l_f] C_G(e, f)$.

Now $G^r_e \cap G^l_f \triangleleft C_G^r(e) \cap C_G^l(f)$. Also if $a \in G^l_f \cap C_G(T_e)$, $b \in G^r_e \cap C_G(T_f)$, then $a^{-1} b^{-1} a b \in G^r_e \cap G^l_f$. Moreover $C_G(T_e, T_f)$ normalizes $G^r_e \cap C_G(T_f)$ and $G^l_f \cap C_G(T_e)$. So we are done by Lemmas 1.4, 1.5.

LEMMA 1.8. Let $e, f \in E(\overline{T})$, $a \in G^r_e$, $b \in C_G(T_e)$. If $ab \in C_G^r(f)$, then $a, b \in C_G^r(f)$. If $ab \in C_G^l(f)$, then $a, b \in C_G^l(f)$.

PROOF. Suppose $ab \in C_G^r(f)$. Now $a = a_1 b_2$ for some $a_1 \in R_u(C_G^r(e))$, $a_2 \in G^r_e$. Then $a_2 b \in C_G(e)$. So by Fact 1.3, $a_1, a_2 b \in C_G^r(e)$. Then $a_2 b \in C_G(e) \cap C_G^r(f)$. So by Fact 1.2, $u^{-1} a_2 = v b^{-1} \in G^r_e \cap C_G(T_e) = T_e \subseteq T \subseteq C_G^r(f)$. So $b \in C_G^r(f)$. Hence $a \in C_G^r(f)$.

PROPOSITION 1.9. Let $Y \subseteq E(\overline{T})$, $e_1, \ldots, e_{k+1} = f \in \Gamma$. Let $V = C_G(\Gamma)$, $Y_0 = G^l_f$, $Y_1 = G^r_{e_1}$, $Y_i = C_G(e_1, \ldots, e_{i-1}) \cap G^r_{e_i}$ for $i = 2, \ldots, k + 1$. Then $Y_0 \cdots Y_{k+1} \cap V = \prod_{i=1}^{k+1} V_{e_i}$.

PROOF. We prove by induction on k. So first let $k = 0$, $a \in G^l_f$, $b \in G^r_f$ such that $ab \in V \subseteq C_G(f)$. Then $a f = a b f = f a b = f$. So $a \in G_f$. Similarly $b \in G_f$. So $ab \in G_f \cap V = G^l_f \cap V = V_f = V_f (G_f \cap T) = V_f$.

So let $k > 0$, $a \in Y_0 \cdots Y_{k+1} \cap V$. Then $a = y_0 \cdots y_{k+1}, y_i \in Y_i$. Now y_1, \ldots, y_{k+1}, $a \in C_G^r(e_1)$. Thus $y_0 \in C_G^r(e_1) \cap C_G^l_f$. By Lemma 1.5, there exist $y_0 \in G^l_f \cap C_G(T_{e_1}), u \in G^r_f$, such that $y_0 = y_0 u$. So $y_1 = u y_1 \in G^r_{e_1}$ and $a = y_0 y_1 y_2 \cdots y_{k+1}$. Thus without loss of generality, we may assume that $y_0 \in C_G(T_{e_1}) \cap G^r_{e_1}$. For $i = 2, \ldots, k + 1$, we can factor by Lemma 1.5.

$y_i = c_i y_i^\prime$, $c_i \in G_{e_i}$, $y_i^\prime \in C_G(e_1, \ldots, e_{i-1}) \cap C_G(T_{e_i}) \cap G^r_{e_i}$.

Let $d_i = y_2 \cdots y_{i-1} c_i (y_2 \cdots y_{i-1})^{-1}$, $i = 3, \ldots, k + 1$.

Then $y_i^\prime = y_1 d_{k+1} \cdots d_3 c_2 \in G^r_{e_1}$, $y_i^\prime = y_0 y_i y_0^{-1} \in C_G^r_{e_1}$.

Clearly $a = y_0 y_1^\prime y_2^\prime \cdots y_{k+1} = y_0^\prime y_0 y_2^\prime \cdots y_{k+1}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Moreover \(y_0 y'_2 \cdots y'_{k+1} \in C_G(T_{e_1}) \). By Lemma 1.8, \(y'_2, y_0 y'_2 \cdots y'_{k+1} \in V \). So \(y'_1 \in V_{e_1} \). By the induction hypothesis \(y_0 y'_2 \cdots y'_{k+1} \in V_{e_2} \cdots V_{e_{k+1}} \). This completes the proof.

2. Main section. We fix a connected linear algebraic monoid \(M \) with zero 0 and a reductive group of units \(G \). As usual two elements \(a, b \in M \) are conjugate \((a \sim b)\) if \(x^{-1} ax = b \) for some \(x \in G \). Note that for \(a \in M \), \(g \in G \), \(ag \sim ga \). We fix a maximal torus \(T \) of \(G \). Let \(W = N_G(T)/T \) denote the Weyl group of \(G \). We let \(\mathcal{R}, \mathcal{L}, \mathcal{K} \) denote the usual Green's relations on \(M \) [2]. If \(a, b \in M \), then \(a \mathcal{R} b \) means \(aM = bM \), \(a \mathcal{L} b \) means \(Ma = Mb \), \(a \mathcal{K} b \). Let \(e \in E(T) \), \(\sigma = nT \in W \). Then we let

\[
e^\sigma = e^{-1} e^\sigma = n^{-1} \epsilon \in E(T).
\]

We let

\[
M_{e, \sigma} = C_G(e^\sigma \theta \in \langle \sigma \rangle) \sigma.
\]

Our first result is that every element of \(M \) is conjugate to an element of some \(M_{e, \sigma} \).

In preparation, we prove

Lemma 2.1. Let \(e \in E(T) \), \(\sigma = nT \in W \), \(k \in \mathbb{Z}^+ \), \(x, y \in C_G(e^\sigma | 0 \leq j \leq k-1) \), \(x \in C^{\mathcal{L}}_{e^k} \). Then \(exyn \sim eyxn \).

Proof. We prove by induction on \(k \). First let \(k = 1 \). Then

\[
exyn = xyen \sim ynenx = yne^\sigma x
= yne^\sigma = yen = eyxn.
\]

In general let \(k > 1 \). Then

\[
exyn = xeyn \sim eyxn = eyxn^{-1} y^{-1} yn = ex'y
\]

where \(x' = ynxn^{-1} y^{-1} \in C_G(e^\sigma | 0 \leq j \leq k-2) \cap G^{\mathcal{L}}_{e^{k-1}} \). So by the induction hypothesis \(ex'y \sim eyn \).

Theorem 2.2. Every element of \(M \) is conjugate to an element of some \(M_{e, \sigma} \).

Proof. Let \(a \in M \). By [8, Corollary 2.3], there exists a maximal torus \(T_1 \) of \(G \), \(e, f \in E(T_1) \) such that \(e \mathcal{R} f \). Since all maximal tori of \(G \) are conjugate, we can assume that \(T = T_1 \). There exists \(\theta = mT \in W \) such that \(e^\theta = f \). Thus \(e \mathcal{R} em \mathcal{L} f \). So \(em \not\mathcal{K} a \). Since \(eC_G(e) \) is the \(\mathcal{K} \)-class of \(e \), we see that \(a \in eC_G(e)m = eC_G(e) \theta \). Suppose inductively that \(a \in eC_G(e^j \theta | j = 0, \ldots, k) \theta \). Let \(H = C_G(e^j \theta | j = 0, \ldots, k) \). So there exists \(x \in H \) such that \(a = exm \). By [5], \(C_H(e^{\theta k+1}) \), \(C_H(\theta e \theta^{-1}) \) are parabolic subgroups of \(H \) containing \(T \). By the Bruhat decomposition there exists \(\pi = n_1 T \in W(H) \), \(x_1 \in C_H(e^{\theta k+1}) \), \(x_2 \in C_H(\theta e \theta^{-1}) \) such that \(x = x_1 n_1 x_2 \). So

\[
exm = ex_1 n_1 x_2 m \sim (m^{-1} x_2 m) ex_1 n_1 m.
\]

Now \(m^{-1} x_2 m \in C_G(e^j \theta | j = 1, \ldots, k + 1) \cap C_G(e) \). So

\[
m^{-1} x_2 m e = ze \quad \text{for some} \ z \in C_G(e^j \theta | j = 0, \ldots, k + 1).
\]

Thus

\[
a \sim ezz_1 n_1 m, \quad z \in C_H^t(e^{\theta k+1}).
\]
Let \(\lambda = \pi \theta = n_1 m T \in W \). We claim that \(e^{\lambda j} = e^{\theta j} \) for \(j = 0, \ldots, k + 1 \). For \(j = 0 \), this is obvious. So assume \(e^{\theta j} = e^{\lambda j}, j \leq k \). Then \(\pi \in C_W(e^{\theta j}) \). So
\[
e^{\lambda j+1} = (e^{\theta j})^\lambda = (e^{\theta j})^{\pi \theta} = (e^{\theta j})^\theta = e^{\theta j+1}.
\]
Thus \(y = zx_1 \in C^l_H(e^{\lambda k+1}) \). Hence \(y = y_1 y_2 \) for some \(y_1 \in H^l_{e^{\lambda k+1}}, y_2 \in C_H(e^{\lambda k+1}) \). By Lemma 2.1,
\[
a \sim e y_1 y_2 n_1 m \sim e y_2 n_1 m, \quad y_2 \in C_G(e^{\lambda j} | j = 0, \ldots, k + 1).
\]
Continuing this process, we see that there exist \(\sigma = n T \in W \) and \(u \in C_G(e^{\sigma j} | 0 \leq j \leq |W|) = C_G(e^\gamma | \gamma \in \langle \sigma \rangle) \) such that \(a \sim e u n \). Then clearly \(e u n \in M_{e, \sigma} \). This completes the proof of the theorem.

Schein [13] has shown that the full transformation semigroup on any set is a union of its inverse subsemigroups. The corresponding result, for the full matrix semigroup over a field, follows from the Fitting decomposition.

Theorem 2.3. (i) If \(F \) is a commutative, idempotent submonoid of \(M \), then \(FNG(F) \) is the maximal unit regular inverse submonoid of \(M \) with idempotent set \(F \).

(ii) If \(F \) is a subsemilattice of \(E(T) \) with \(1 \in F \), then
\[
FNG(F) = FC_G(F)N_W(F).
\]

(iii) If \(e \in E(T), \sigma \in W, F = \{1, e^{\theta} | \theta \in \langle \sigma \rangle \} \), then \(M_{e, \sigma} \subseteq FNG(F) \).

(iv) \(M \) is a union of its unit regular inverse submonoids.

Proof. (i) That \(FNG(F) \) is a submonoid of \(M \) is obvious. Let \(a \in FNG(F), a^2 = a \). So \(a = fu \) for some \(f \in F, u \in N_G(F) \). Then \(fu f = f \). Since \(M \) is a matrix semigroup and \(f, uf u^{-1} \) commute, we see that \(f = uf u^{-1} \). Thus \(a = fu = fu f = f \in F \). So \(F \) is the idempotent set of \(FNG(F) \). It follows that \(FNG(F) \) is the maximal unit regular submonoid of \(M \) with idempotent set \(F \). Since \(F \) is commutative, it follows [2] that \(FNG(F) \) is an inverse semigroup.

(ii) Let \(a \in N_G(F) \). Clearly \(T \subseteq C_G(F) \). So \(a Ta^{-1} \subseteq C_G(aFa^{-1}) = C_G(F) \). So \(T, a Ta^{-1} \) are maximal tori of \(C_G(F) \). Hence \(b^{-1} a Ta^{-1} b = T \) for some \(b \in C_G(F) \). Hence \(b^{-1} a \in N_G(T) \cap N_G(F) \). So \(a = b(b^{-1} a) \in C_G(F)N_W(F) \).

(iii), (iv) follow from (ii) and Theorem 2.2.

Now fix \(e \in E(T), \sigma = n T \in W \). Let \(f = e^\sigma, \alpha + 1 \) the order of \(\sigma \). Let
\[
V = C_G(e^{\theta} | \theta \in \langle \sigma \rangle).
\]
So \(V \) is a reductive group, \(T \subseteq V, V^\sigma = V, M_{e, \sigma} = e V \sigma \). Now \(\hat{V}_e = \{ a \in V | ae = ea = e \} = \hat{T}_e V_e \) is a closed normal subgroup of \(V \). Let
\[
\Omega = \prod_{\theta \in \langle \sigma \rangle} \hat{V}_e^\theta = \prod_{\theta \in \langle \sigma \rangle} \hat{V}_e^{e^\theta}.
\]
Then \(\Omega \) is a closed normal subgroup of \(V \). If \(x \in V \), let \(x^* = n x^{-1} n_1 \in V \). Then \(\Omega^* = \Omega \). So \(\ast \) induces an antiautomorphism \(\ast \) on the reductive group \(G_{e, \sigma} = V/\Omega \). Define \(\xi : M_{e, \sigma} \rightarrow G_{e, \sigma} \) as follows: If \(a = evn \in M_{e, \sigma}, v \in V \), then, \(\xi(a) = v \Omega \in G_{e, \sigma} \). Since \(\hat{V}_e \subseteq \Omega, \xi \) is well defined. Note further that if \(G_{e, \sigma} \) is replaced by \(e V / e \Omega \) (which is isomorphic to \(G_{e, \sigma} \) as an abstract group), then \(\xi \) would also be a morphism of varieties.
THEOREM 2.4. Let \(a, b \in M_{e, \sigma} \). Then \(a \) is conjugate to \(b \) in \(M \) if and only if there exists \(x \in G_{e, \sigma} \) such that \(x \xi(a)x^* = \xi(b) \).

PROOF. For \(a, b \in M_{e, \sigma} \), define \(a \equiv b \) if \(x \xi(a)x^* = \xi(b) \) for some \(x \in G_{e, \sigma} \). We are to show that \(\equiv = \sim \). Let

\[
A = \{ a \in V | eun \sim eau n \text{ for all } u \in V \}.
\]

Clearly \(\tilde{V} \subseteq A \). Let \(a, b \in A \). Then for \(u \in V \), \(eaubu \sim ebuu \sim eun \). So \(A^2 \subseteq A \). Now let \(a \in A, u \in V \). Then

\[
e(na^{-1})un \sim an^{-1}unen = ea(n^{-1}un)n
\sim e(n^{-1}un)n = n^{-1}unen \sim eun.
\]

Thus \(nAn^{-1} \subseteq A \). It follows that \(\Omega \subseteq A \). Now let \(m_1, m_2 \in M_{e, \sigma} \) such that \(m_1 \equiv m_2 \). Let \(m_1 = eun, m_2 = evn \) where \(u, v \in V \). Then there exists \(x \in V \) such that \(v \in \Omega xu nx^{-1}n^{-1} \). Since \(\Omega \subseteq A \),

\[
m_1 = evn \sim exunx^{-1}n^{-1}n = exunx^{-1}
\sim xeunx^{-1} \sim eun \equiv m_2.
\]

This shows that \(\equiv \subseteq \sim \).

Conversely let \(m_1, m_2 \in M_{e, \sigma} \) such that \(m_1 \sim m_2 \). Then there exists \(X \in G \) such that

(1) \(X_1m_1 = m_2X_1 \).

Let \(m_1 = eun, m_2 = evn \) where \(u, v \in V \). Then by (1),

\[
X_1e \in X_1eun = evnX_1e
\]

So \(X_1e = eX_1e \) and \(X_1 \in C_G^e(e) \). Also by (1),

\[
fX_1 = n^{-1}enX_1 \in m_1X_1 \in m_1 \in C_f \in f.
\]

Thus \(X_1 \in C_G^e(e) \cap C_G^f(e) \). By Lemma 1.7, \(X_1 \in X[G_e \cap G_f] \) for some

\[
X \in [C_G(T_e) \cap G_f][C_G(T_e, T_f)][C_G(T_f) \cap G_e^e].
\]

Since \(m_1 = em_1, m_2 = m_2f \), we see by (1) that

(2) \(Xeun = evnX \).

Now \(X = axb \) for some

(3) \(a \in C_G(T_e) \cap G_f, \quad x \in C_G(T_e, T_f), \quad b \in C_G(T_f) \cap G_e^e \).

So by (2), \(eaxun = evnxb \). Then \(eaxu = evnxbn^{-1} \) and \(axu, vnxbn^{-1} \in C_G(e) \). So

(4) \(axu = vnxbn^{-1}z \) for some \(z \in \tilde{G} \).

Now \(nxbn^{-1} \in C_G(T_e) \). So by Lemma 1.6, \(nxbn^{-1} = \eta t \) for some \(t \in T, \eta \in C_G(G_e) \). So \(vt \in V \subseteq C_G(e) \). So \(v' \in V \subseteq C_G(T_e) \), \(v'' \in V \subseteq G_e \). Also \(u = u'u'' \) for some \(u' \in C_V(V_e) \subseteq C_G(T_e), u'' \in V \subseteq G_e \). Then

\[
aux = vnxbn^{-1}z = v't\eta z = v'v''\eta z = v'\eta v''z.
\]

So

(5) \(aux' = v'\eta (v''z(u'')^{-1}) \).
Let $z' = v''z(u'')^{-1}$. Then $z' \in \hat{G}_e$. So $z'h = hz' = h$ for all $h \in E(M)$ with $h \leq e$. Now $axu', v', \eta \in C_G(T_e)$. So by (5), $z' \in C_G(T_e)$. Thus $z'h = hz'$ for all $h \in E(T)$ with $h \geq e$. So for any maximal chain Γ of $E(\bar{T})$ with $e \in \Gamma$, $z' \in C_G(\Gamma) = T \subseteq V$. Let $u_1 = u'(z')^{-1}v'' \in V$. Then by (5),

$$axu_1 = v'v'' = v'v''\eta = vtn\eta = vnxbn^{-1}.$$

Also $z = (v'')^{-1}z'u'' \in V \cap \hat{G}_e = \hat{V}_e$. So

$$axu_1 = vnxbn^{-1}, \quad u_1, v \in V, \ z \in \hat{V}_e.$$

Now $xb \in C^*_G(e)$. So $nxbn^{-1} \in C^*_G(\sigma e \sigma^{-1})$. Thus $ax \in C^*_G(\sigma e \sigma^{-1})$. By (3), Lemma 1.8, $a, x \in C^*_G(\sigma e \sigma^{-1})$. So $x \in C^*_G(\sigma e \sigma^{-1}) \cap C_G(T_e, T_f)$. Hence we can factor

$$x = y_1x_1 \quad \text{for some } y_1 \in C^*_G(\sigma e \sigma^{-1}) \cap C_G(T_e, T_f), \ x_1 \in C_G(T_{\sigma e \sigma^{-1}}, T_e, T_f).$$

Also $a \in C^*_G(\sigma e \sigma^{-1}) \cap C_G(T_e) \cap G_f^l$. So working within $C_G(T_e)$ and applying Lemma 1.5, we can factor

$$a = c_1a_1 \quad \text{for some } c_1 \in C^*_G(\sigma e \sigma^{-1}) \cap G_f^l \cap C_G(T_e), \ a_1 \in C_G(T_e, T_{\sigma e \sigma^{-1}}) \cap G_f^l.$$

Now by (6),

$$c_1a_1y_1x_1u_1 = vny_1x_1bn^{-1}.$$

So

$$wa_1x_1u_1 = vny_1x_1n^{-1}$$

where

$$w = c_1a_1y_1a_1^{-1}[(a_1x_1u_1)(nb^{-1}n^{-1})(a_1x_1u_1)^{-1}] \in C^*_G(e).$$

Suppose now inductively that

$$x = y_1 \cdots y_kx_k,$$

where

$$y_i \in C_G(T_f, T_{\sigma i e \sigma^{-1}}) \cap G^l_{\sigma i e \sigma^{-1}}, \quad i = 0, \ldots, k, \ n \cap G^l_{\sigma i e \sigma^{-1}},$$

$$x_k \in C_G(T_f, T_{\sigma i e \sigma^{-1}}), \quad j = 0, \ldots, k.$$

Further assume that there exist

$$w_i \in C_G(T_{\sigma i e \sigma^{-1}}) \cap G^l_{\sigma i e \sigma^{-1}}, \quad i = 1, \ldots, k,$$

$$a_k \in C_G(T_{\sigma i e \sigma^{-1}}) \cap G^l_f \cap G^l_{\sigma i e \sigma^{-1}}, \quad i = 0, \ldots, k.$$

such that

$$w_k \cdots w_1a_kx_ku_1 = vny_kx_kn^{-1}.$$

Note that (7)–(9) show (10)–(12) to be valid for $k = 1$. Now

$$ny_kx_kn^{-1} \in C^*_G(\sigma^{k+1} e \sigma^{-k-1}).$$

So by (12), $w_k \cdots w_1a_kx_k \in C^*_G(\sigma^{k+1} e \sigma^{-k-1})$. Repeated use of Lemma 1.8 shows that $w_1, \ldots, w_k, a_k, x_k \in C^*_G(\sigma^{k+1} e \sigma^{-k-1})$. So by Lemma 1.5, we can factor for
$i = 1, \ldots, k,$

\[
\begin{align*}
 w_i &= q_i w'_i, \\
 a_k &= c_{k+1} a_{k+1}, \\
 x_k &= y_{k+1} x_{k+1},
\end{align*}
\]

$w_i' \in C_G(T_{\sigma^j e \sigma^{-j}} | i + 1 \leq j \leq k + 1) \cap G_{\sigma^j e \sigma^{-j}}^r,$

$q_i \in G_{\sigma^j e \sigma^{-j}}^r \cap C_G(T_{\sigma^j e \sigma^{-j}} | i + 1 \leq j \leq k),$

$a_k \in C_G(T_{\sigma^j e \sigma^{-j}} | 0 \leq j \leq k + 1) \cap G_f,$

$x_{k+1} \in C_G(T_f, T_{\sigma^j e \sigma^{-j}} | 0 \leq j \leq k + 1).$

Let

\[
\begin{align*}
 q'_i &= w'_k \cdots w'_{i+1} q_i (w'_k \cdots w'_{i+1})^{-1} \in G_{\sigma^j e \sigma^{-j}}^r, \\
 c'_{k+1} &= w'_k \cdots w'_i c_{k+1} (w'_k \cdots w'_i)^{-1} \in G_{\sigma^j e \sigma^{-j}}^r, \\
 y'_{k+1} &= w'_k \cdots w'_i a_{k+1} y_{k+1} (w'_k \cdots w'_i a_{k+1})^{-1} \in G_{\sigma^j e \sigma^{-j}}^r, \\
 p &= q_k q'_{k-1} \cdots q'_i y'_{k+1} \in G_{\sigma^j e \sigma^{-j}}^r.
\end{align*}
\]

Then

\[
\begin{align*}
 w_k \cdots w_1 a_k x_k &= pw'_k \cdots w'_i a_{k+1} x_{k+1}.
\end{align*}
\]

So by (12),

\[
\begin{align*}
 w'_{k+1} \cdots w'_{i+1} a_{k+1} x_{k+1} u_1 &= v_1 y_{k+1} x_{k+1} n^{-1},
\end{align*}
\]

where

\[
\begin{align*}
 w'_{k+1} &= v n y_k^{-1} n^{-1} v^{-1} p \in G_{\sigma^j e \sigma^{-j}}^r.
\end{align*}
\]

This completes the induction step in (10)–(12). So (10) is valid for all $k \in \mathbb{Z}^+$. In particular it is valid for $k = a$, where $\sigma^{a+1} = 1$. Then

\[
(13) \quad x = y_1 \cdots y_a x_a, \quad x_a \in C_G(e^\theta | \theta \in \langle \sigma \rangle) = V.
\]

Now by (4), (6)

\[
(14) \quad axu = vn x_n z, \quad z \in \hat{V}.
\]

Let $Y_0 = G_f$, $Y_1 = G_{\sigma e \sigma^{-1}}^r$,

\[
Y_i = C_G(\sigma^i e \sigma^{-j} | j = 1, \ldots, i - 1) \cap G_{\sigma^i e \sigma^{-j}}^r, \quad i \geq 2.
\]

Then Y_j normalizes Y_i for $j \geq i \geq 1$. Also V normalizes Y_i for all i. By (3), (11) we see that

\[
(15) \quad a \in Y_0, \quad n b n^{-1} \in Y_1, \quad y_i \in Y_i, \quad 1 = 1, \ldots, a.
\]

Also, since $\sigma^{a+1} = 1$, we see by (11) that

\[
(16) \quad n y_a n^{-1} \in Y_{a+1}, \quad i = 1, \ldots, a - 1, \quad n y_a n^{-1} \in V.
\]

Since $x_a, u, v \in V$ and $V^\sigma = V$, we see by (13)–(16),

\[
\begin{align*}
 v(x_\alpha u x_\alpha^*)^{-1} &= v n x_\alpha^{-1} u^{-1} x_\alpha^{-1} \\
 &= ax u z^{-1} n b^{-1} x^{-1} x_\alpha n^{-1} u^{-1} x_\alpha^{-1} \\
 &= a v y_1 \cdots y_a x_\alpha u z^{-1} u^{-1} x_\alpha^{-1} (y_1^{-1} \cdots y_a) (x_\alpha u) \\
 &\quad \times [n b^{-1} x_\alpha^{-1} (y_1^{-1} \cdots y_a^{-1})] (x_\alpha u)^{-1},
\end{align*}
\]

$\in \hat{V} Y_0 Y_1 \cdots Y_a$.

Since $\sigma^a e \sigma^{-a} = f$, we see by Proposition 1.9 that $v(x_\alpha u x_\alpha^*)^{-1} \in \Omega$. Thus $m_1 = e un \equiv evn = m_2$. This completes the proof of the theorem.
The proof of the above theorem shows

COROLLARY 2.5. Let \(a, b \in M_{e, \sigma}\). Then \(a \sim b\) if and only if there exists \(x \in V = C_G(e^\theta|\theta \in \langle \sigma \rangle)\) such that \(x^{-1}ax = b\).

COROLLARY 2.6. Let \(D = eC_G(e)\) denote the group of units of \(eMe\), \(h \in E(e^T), \theta = mT \in C_W(e)\). Then \(M_{h, \theta} = (eMe)_{h, e}\theta\) and \(G_{h, \theta} \cong D_{h, e}\theta\). If \(a, b \in M_{h, \theta}\), then \(a\) is conjugate to \(b\) in \(M\) if and only if \(a\) is conjugate to \(b\) in \(eMe\).

PROOF. Let

\[V = C_G(h^\gamma|\gamma \in \langle \theta \rangle), \quad Y = C_D(h^\gamma|\gamma \in \langle \theta \rangle) \]

Let \(a \in Y\). Then \(a = ex\) for some \(x \in C_G(e)\). For \(\gamma \in \langle \theta \rangle\),

\[xh^\gamma = xeh^\gamma = ah^\gamma = h^\gamma a = h^\gamma ex = h^\gamma x \]

So \(x \in C_V(e)\) and \(Y = eC_V(e)\). Now \(V = V_h C_V(V_h) = V_h C_V(e)\). Hence

\[M_{h, \theta} = hV\theta = hC_V(e)\theta = heC_V(e)\theta = hY\theta = (eMe)_{h, e}\theta. \]

Let \(\Omega = \prod_{\gamma \in \langle \theta \rangle} V_{h, \gamma}\). Since \(V = V_h C_V(e), h \leq e\),

\[G_{h, \theta} = V/\Omega \cong C_V(e)/C_{\Omega}(e) \cong eV/eC_{\Omega}(e). \]

By Proposition 1.9,

\[C_{\Omega}(e) = \prod_{\gamma \in \langle \theta \rangle} [V_{h, \gamma} \cap C_G(e)]. \]

It follows that \(eV/eC_{\Omega}(e) = D_{h, e}\theta\). We are now done by Theorem 2.4.

CONJECTURE 2.7. Let \(a, b \in eMe\). Then \(a\) is conjugate to \(b\) in \(M\) if and only if \(a\) is conjugate to \(b\) in \(eMe\).

CONJECTURE 2.8. Let \(\mathcal{Y} = \{M_{e, \sigma}|e \in E(\bar{T}), \sigma \in W\}, \mathcal{Y}_0\) the set of maximal elements (with respect to inclusion) of \(\mathcal{Y}\). Then if \(Y_1, Y_2 \in \mathcal{Y}_0, a \in Y_1, b \in Y_2, a \sim b\), then \(Y_1^\theta = Y_2\) for some \(\theta \in W\).

Let \(g \in G\). Then the map: \(x \rightarrow gx^{-1}g^{-1}\) is an antiautomorphism of \(G\). We will call such an antiautomorphism an inner antiautomorphism.

EXAMPLE 2.9. Let \(n \in Z^+, M = M_n(K)\). Let \(h = \prod_{\theta \in \langle \sigma \rangle} e^\theta, r\) the rank of \(h\). Then \(G_{e, \sigma} \cong GL(r, K)\) and * is an inner antiautomorphism.

EXAMPLE 2.10. Let \(M = \{A \otimes B|A, B \in M_2(K)\}\). Then the possibilities for \(G_{e, \sigma}\) are \(G, SL(2, K), PGL(2, K), G_m, \{1\}\). In all cases, * is inner.

CONJECTURE 2.11. If the simple components of \(G\) are all of type \(A_t\), then * is necessarily inner.

By [3, Theorem 27.4], an antiautomorphism of a semisimple group is the composition of an inner antiautomorphism and an automorphism determined by an automorphism of the Dynkin diagram of the group.

CONJECTURE 2.12. For all \(t \in R(G_{e, \sigma})\), \(t^* = t^{-1}\) and hence * is completely determined by its action on the semisimple group \(G'_{e, \sigma} = (G_{e, \sigma}, G_{e, \sigma})\).

3. Nilpotent elements. We continue from [8] the analysis of conjugacy classes of nilpotent elements of \(M\). It was shown in [8] that the conjugacy classes of minimal nilpotent elements (in the \(J\)-class ordering) is always finite. Renner [12] has introduced the finite fundamental inverse monoid \(\text{Ren}(M) = N_G(\bar{T})/T\) and
used it to generalize the Bruhat decomposition to M. We easily have

Proposition 3.1. Let $e \in E(T)$, $\sigma = nT \in W$, $k \in \mathbb{Z}^+$. Then the following conditions are equivalent:

(i) $a^k = 0$ for some $a \in M_{e,\sigma}$,

(ii) $M_{e,\sigma}^k = 0$,

(iii) $(\sigma e)^k = 0$ in $\text{Ren}(M)$,

(iv) $e^\sigma \cdots e^\sigma = 0$.

Since $V = C_G(e^\sigma|\theta \in (\sigma))$ is a reductive group, we see that any closed normal subgroup of V containing T, must equal V. Thus

Proposition 3.2. Let $e \in E(T)$, $\sigma \in W$. Then $G_{e,\sigma}$ is trivial if and only if $T = \prod_{\theta \in (\sigma)} T_{e^\theta}$.

In particular, we see that $G_{e,\sigma}$ trivial implies that $e\sigma$ is nilpotent. If the groups $G_{e,\sigma}$ are trivial for all nilpotent $e\sigma$, then by Theorems 2.2, 2.4, the number of conjugacy classes of nilpotent elements in M is finite.

Conjecture 3.3. The number of conjugacy classes of nilpotent elements of M is finite if and only if the groups $G_{e,\sigma}$ are trivial for all nilpotent $e\sigma$.

Example 3.4. If $M = M_n(K)$, then we see by Example 2.9 that the groups $G_{e,\sigma}$ are trivial for nilpotent $e\sigma$.

Example 3.5. Let $G_0 = \{A \otimes (A^{-1})^t|A \in \text{SL}(3,K)\}$, $G = K^*G_0$, $M = \overline{KG_0}$.

Let $S = M \setminus G$. Then

$$E(S) = \{e \otimes f|e^2 = e, f^2 = f \in M_3(K), ef^t = f^te = 0\}.$$

In particular

$$e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in E(M).$$

Also if

$$\sigma = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \in W(G),$$

then $e^\sigma = f$ and $(e^\sigma)^2 = 0$. The group $G_{e,\sigma}$ can be seen to be the one dimensional torus with $*$ being given by $x \rightarrow x^{-1}$. Thus by Theorem 2.4, the number of conjugacy classes of nilpotent elements of M is infinite. However if C denotes the center of G, then the number of conjugacy classes of nilpotent elements in M/C is finite.

Example 3.6. Suppose char $K \neq 2$, $n \in \mathbb{Z}^+$, $n \geq 2$. For $r \in \mathbb{Z}^+$, let J_r denote the $r \times r$ matrix

$$\begin{bmatrix} 1 & 0 & & & \\ & & & & \\ & & & & \\ & & & & \\ 1 & & & & \end{bmatrix}.$$

Let G_0 consist of all $A \in \text{SL}(2n+1,K)$ such that

$$A^t \begin{bmatrix} 1 & 0 \\ 0 & J_{2n} \end{bmatrix} A = \begin{bmatrix} 1 & 0 \\ 0 & J_{2n} \end{bmatrix}.$$
Thus [3, §7.2], \(G_0 \) is the special orthogonal group of type \(B_n \). Let \(G = K^*G_0 \), \(M = KG_0 \). Then

\[
e = \begin{bmatrix} 0 & 0 & 0 \\ 0 & I_n & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad f = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_n \end{bmatrix} \in E(M).
\]

If

\[
\sigma = \begin{bmatrix} \pm 1 & 0 \\ 0 & J_{2n} \end{bmatrix} \in W(G),
\]

then \(e^\sigma = f \) and \((e\sigma)^2 = 0\). It can be seen that \(G_{e,\sigma} \cong \text{PGL}(n, K) \) with the antiautomorphism * on \(G_{e,\sigma} \) given by \(A \to J_n A^t J_n \). Thus by Theorem 2.4, the number of conjugacy classes of nilpotent elements of \(M \) is infinite. This gives a counterexample to [8, Conjectures 4.5, 4.6]. Note also that for \(n \geq 3 \), * is not inner.

The above examples suggest

Conjecture 3.7. Suppose that the center of \(G \) is one dimensional. Then the number of conjugacy classes of nilpotent elements of \(M \) is finite if and only if \(\text{Ren}(M) \) is isomorphic to the symmetric inverse semigroup of some finite set.

References

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205