Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nil $ K$-theory maps to cyclic homology


Author: Charles A. Weibel
Journal: Trans. Amer. Math. Soc. 303 (1987), 541-558
MSC: Primary 18F25; Secondary 18G99, 19D35, 19D55
DOI: https://doi.org/10.1090/S0002-9947-1987-0902784-0
MathSciNet review: 902784
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Algebraic $ K$-theory breaks into two pieces: nil $ K$-theory and Karoubi-Villamayor $ K$-theory. Karoubi has constructed Chern classes from the latter groups into cyclic homology. We construct maps from nil $ K$-theory to cyclic homology which are compatible with Karoubi's maps, but with a degree shift. Several recent results show that in characteristic zero our map is often an isomorphism.


References [Enhancements On Off] (What's this?)

  • [And] D. W. Anderson, Relationship among $ K$-theories, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1973. MR 0349809 (50:2302)
  • [Bur] D. Burghelea, The cyclic homology of the group rings, Comment. Math. Helv. 60 (1985), 354-365. MR 814144 (88e:18007)
  • [Bur1] -, Cyclic homology and the algbraic $ K$-theory of spaces I, Contemp. Math., vol. 55, part I, Amer. Math. Soc, Providence, R.I., 1986.
  • [C] A. Connes, Cohomologie cyclique et foncteurs $ {\operatorname{Ext} ^n}$, C.R. Acad. Sci. Paris 296 (1983), 953-958. MR 777584 (86d:18007)
  • [CE] H. Cartan and S. Eilenberg, Introduction to homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 0077480 (17:1040e)
  • [CK] A. Connes and M. Karoubi, Caractère multiplicatif d'un module de Fredholm, C.R. Acad. Sci. Paris 299 (1984), 963-968. MR 774679 (86g:58008)
  • [D] R. K. Dennis, Algebraic $ K$-theory and Hochschild homology, unpublished notes, 1975-1976.
  • [DI] R. K. Dennis and K. Igusa, Hochschild homology and the second obstruction for pseudo-isotopy, Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin and New York, 1982. MR 689365 (84m:18014)
  • [G] T. Goodwillie, Algebraic $ K$-theory and cyclic homology, preprint, 1985.
  • [G1] -, Cyclic homology, derivations, and the free loop space, Topology 24 (1985), 187-215. MR 793184 (87c:18009)
  • [IAS] Institute for Advanced Study, Cyclic homology seminar, 1984-85.
  • [K] M. Karoubi, Homologie cyclique des groupes et des algèbres, C.R. Acad. Sci. Paris 297 (1983), 381-384. MR 732839 (85g:18012)
  • [K1] -, Homologie cyclique et $ K$-théorie algébrique, C.R. Acad. Sci. Paris 297 (1983), 447-450 and 513-516.
  • [K2] -, Homologie cyclique et régulateurs en $ K$-théorie algébrique, C.R. Acad. Sci. Paris 297 (1983), 557-560. MR 735692 (85f:18006)
  • [Kass] C. Kassel, Cyclic homology, comodules and mixed complexes, J. Algebra (to appear). MR 883882 (88k:18019)
  • [L] J.-L. Loday, Symboles en $ K$-théorie algébrique supérieure, C.R. Acad. Sci. Paris 292 (1981), 863-866. MR 623517 (82f:13005)
  • [LQ] J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. MR 780077 (86i:17003)
  • [Mac] S. Mac Lane, Homology, Springer-Verlag, New York, 1963. MR 1344215 (96d:18001)
  • [May] J. P. May, Simplicial objects in algebraic topology, Van Nostrand, Princeton, N.J., 1967. MR 0222892 (36:5942)
  • [Ogle] C. Ogle, On the $ K$-theory and cyclic homology of a square-zero ideal. I, J. Pure Appl. Algebra (to appear). MR 897017 (88j:18007)
  • [Ogle1] -, The map from cyclic homology into $ K$-theory, Ph.D. thesis, Brandeis Univ., 1984.
  • [OW] C. Ogle and C. Weibel, Relative algebraic $ K$-theory and cyclic homology, preprint, 1987.
  • [S] R. Staffeldt, Rational algebraic $ K$-theory of certain truncated polynomial rings, Proc. Amer. Math. Soc. 95 (1985), 191-198. MR 801322 (86m:18010)
  • [W] C. Weibel, $ KV$-theory of categories, Trans. Amer. Math. Soc. 267 (1981), 621-635. MR 626494 (83i:18020)
  • [W1] -, $ K$-theory and analytic isomorphisms, Invent. Math. 61 (1980), 177-197. MR 590161 (83b:13011)
  • [W2] -, Nilpotence and $ K$-theory, J. Algebra 61 (1979), 298-307. MR 559841 (83b:16019)
  • [W3] -, Mayer-Vietoris sequences and $ \bmod p$ $ K$-theory, Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin and New York, 1982.
  • [W4] -, Mayer-Vietoris sequences and module structures on $ N{K_{\ast}}$, Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin and New York, 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18F25, 18G99, 19D35, 19D55

Retrieve articles in all journals with MSC: 18F25, 18G99, 19D35, 19D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0902784-0
Keywords: Cyclic homology, algebraic $ K$-theory
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society