Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Nilpotent spaces of sections


Author: Jesper Michael Møller
Journal: Trans. Amer. Math. Soc. 303 (1987), 733-741
MSC: Primary 55P60; Secondary 55S45
MathSciNet review: 902794
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The space of sections of a fibration is nilpotent provided the base is finite $ CW$-complex and the fiber is nilpotent. Moreover, localization commutes with the formation of section spaces.


References [Enhancements On Off] (What's this?)

  • [1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0365573 (51:1825)
  • [2] H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340-361. MR 0079265 (18:59b)
  • [3] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620. MR 667163 (84a:55010)
  • [4] R. O. Hill, Jr., Moore-Postnikov towers for fibrations in which $ {\pi _1}$ (fibre) is non-abelian, Pacific J. Math. 62 (1976), 141-148. MR 0410747 (53:14493)
  • [5] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies no. 15, North-Holland, Amsterdam, 1975. MR 0478146 (57:17635)
  • [6] P. Hilton, G. Mislin, J. Roitberg and R. Steiner, On free maps and free homotopies into nilpotent spaces, Algebraic Topology (Proceedings, Vancouver 1977), Lecture Notes in Math., vol. 673, Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 517093 (80c:55007)
  • [7] D. Husemoller, Fibre bundles, Graduate Texts in Math., vol. 20, Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR 0370578 (51:6805)
  • [8] L. L. Larmore and E. Thomas, On the fundamental group of a space of sections, Math. Scand. 47 (1980), 232-246. MR 612697 (82h:55014)
  • [9] I. Llerena, Localization of fibrations with nilpotent fibre, Math. Z. 188 (1985), 397-410. MR 771993 (86e:55014)
  • [10] J. F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17. MR 0296943 (45:6002)
  • [11] -, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183-214. MR 0250302 (40:3541)
  • [12] J. M. Møller, Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific J. Math. 129 (1987). MR 910659 (89d:55048)
  • [13] J. M. Møller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), 721-732. MR 808750 (86m:55019)
  • [14] C. A. Robinson, Moore-Postnikov systems for non-simple fibrations, Illinois J. Math. 16 (1972), 234-242. MR 0298664 (45:7714)
  • [15] F. E. A. da Silveira, Rational homotopy theory of fibrations, Pacific J. Math. 113 (1984), 1-34. MR 745592 (86c:55013)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P60, 55S45

Retrieve articles in all journals with MSC: 55P60, 55S45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0902794-3
PII: S 0002-9947(1987)0902794-3
Keywords: Section space, twisted Eilenberg-Mac Lane space, $ K$-principal fibration, Postnikov decomposition, equivariant function space, localization
Article copyright: © Copyright 1987 American Mathematical Society