Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



An operator-theoretic formulation of asynchronous exponential growth

Author: G. F. Webb
Journal: Trans. Amer. Math. Soc. 303 (1987), 751-763
MSC: Primary 47D05; Secondary 47B55, 92A15
MathSciNet review: 902796
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A strongly continuous semigroup of bounded linear operators $ T(t)$, $ t \geqslant 0$, in the Banach space $ X$ has asynchronous exponential growth with intrinsic growth constant $ {\lambda _0}$ provided that there is a nonzero finite rank operator $ {P_0}$ in $ X$ such that $ {\lim _{t \to \infty }}{e^{ - {\lambda _0}t}}T(t) = {P_0}$. Necessary and sufficient conditions are established for $ T(t)$, $ t \geqslant 0$, to have asynchronous exponential growth. Applications are made to a maturity-time model of cell population growth and a transition probability model of cell population growth.

References [Enhancements On Off] (What's this?)

  • [1] G. I. Bell and E. C. Anderson, Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J. 7 (1967), 329-351.
  • [2] F. E. Browder, On the spectral theory of elliptic differential operators, Math. Ann. 142 (1961), 22-130. MR 0209909 (35:804)
  • [3] O. Diekmann, H. Heijmans and H. Thieme, On the stability of the cell size distributions, J. Math. Biol. 19 (1984), 227-248. MR 745853 (86a:92025)
  • [4] O. Diekmann, H. Lauwerier, T. Aldenberg and J. Metz, Growth, fission, and the stable size distribution, J. Math. Biol. 18 (1983), 135-148.
  • [5] M. Eisen, Mathematical models in cell biology, Lecture Notes in Biomathematics, Vol. 30, Springer-Verlag, Berlin, Heidelberg and New York, 1979. MR 635622 (83c:92017)
  • [6] W. Feller, On the integral equation of renewal theory, Ann. Math. Statist. 12 (1941), 243-267. MR 0005419 (3:151c)
  • [7] G. Greiner, A typical Perrron-Frobenius theorem with application to an age-dependent population equation, Infinite-Dimensional Systems, Proceedings, Retzhof 1983, F. Kappel and W. Schappacher, Eds., Lecture Notes in Math., Vol. 1076, Springer-Verlag, Berlin, Heidelberg and New York, 1984. MR 763356 (86b:47073)
  • [8] G. Greiner and R. Nagel, On the stability of strongly continuous semigroups of positive operators on $ {L^2}(\mu )$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 257-262. MR 728436 (85b:47044)
  • [9] G. Greiner, J. Voigt and M. Wolff, On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory 5 (1981), 245-256. MR 617977 (82h:47039)
  • [10] J. K. Hale, Ordinary differential equations, Interscience Series on Pure and Appl. Math., Vol. 21, Wiley-Interscience, New York, 1969. MR 0419901 (54:7918)
  • [11] K. Hannsgen, J. Tyson and L. Watson, Steady-state distributions in probabilistic models of the cell division cycle, SIAM J. Appl. Math. 45 (1985), 523-540. MR 796094 (87e:92030)
  • [12] K. Hannsgen and J. Tyson, Stability of the steady-state size distribution in a model of cell growth and divison, J. Math. Biol. 22 (1985), 293-301. MR 813400 (87d:92041)
  • [13] H. Heijmans, Structured populations, linear semigroups, and positivity (to appear). MR 832818 (87m:35211)
  • [14] P. Jagers, Branching processes with biological applications, Wiley, New York, 1975. MR 0488341 (58:7890)
  • [15] -, Balanced exponential growth: What does it mean and when is it there?, Biomathematics and Cell Kinetics, Development in Cell Biology, Vol. 2, A. Valleron and P. Macdonald, Eds., Elsevier/North-Holland, New York and Amsterdam, 1978, 21-29.
  • [16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg and New York, 1966. MR 0203473 (34:3324)
  • [17] W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators, Acta Appl. Math. 2 (1984), 297-310. MR 753697 (86e:47047)
  • [18] A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. MR 737168 (85h:92010)
  • [19] S. Rubinow, Mathematical problems in the biological sciences, CBMS Regional Conf. Ser. Appl. Math., no. 10, SIAM, Philadelphia, Pa., 1973, pp. 53-73. MR 0462660 (57:2633)
  • [20] -, Age-structured equations in the theory of cell populations, Studies in Mathematical Biology, Vol. 16, Part II, Populations and Communities, S. Levin, Ed., The Mathematical Association of America, Washington, D. C., 1978, pp. 389-410.
  • [21] H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin, Heidelberg and New York, 1974. MR 0423039 (54:11023)
  • [22] F. R. Sharpe and A. J. Lotka, A problem in age distributions, Philos. Mag. 21 (1911), 435-438.
  • [23] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equation, Trans. Amer. Math. Soc. 200 (1974), 395-418. MR 0382808 (52:3690)
  • [24] G. F. Webb, Theory of nonlinear age-dependent population dynamics, Monographs and Textbooks in Pure and Appl. Math. Series, Vol. 89, Dekker, New York, 1985. MR 772205 (86e:92032)
  • [25] -, A model of proliferating cell populations with inherited cycle length, J. Math. Biol. 23 (1986), 269-282. MR 829138 (87h:92074)
  • [26] K. Yosida, Functional analysis, 2nd ed., Springer-Verlag, Berlin, Heidelberg and New York, 1968. MR 0239384 (39:741)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05, 47B55, 92A15

Retrieve articles in all journals with MSC: 47D05, 47B55, 92A15

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society