Quasi -covers of Tychonoff spaces

Authors:
M. Henriksen, J. Vermeer and R. G. Woods

Journal:
Trans. Amer. Math. Soc. **303** (1987), 779-803

MSC:
Primary 54G05

DOI:
https://doi.org/10.1090/S0002-9947-1987-0902798-0

MathSciNet review:
902798

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Tychonoff topological space is called a quasi -space if each dense cozero-set of is -embedded in . In Canad. J. Math. **32** (1980), 657-685 Dashiell, Hager, and Henriksen construct the "minimal quasi -cover" of a compact space as an inverse limit space, and identify the ring as the order-Cauchy completion of the ring . *In On perfect irreducible preimages*, Topology Proc. **9** (1984), 173-189, Vermeer constructed the minimal quasi -cover of an arbitrary Tychonoff space.

In this paper the minimal quasi -cover of a compact space is constructed as the space of ultrafilters on a certain sublattice of the Boolean algebra of regular closed subsets of . The relationship between and is studied in detail, and broad conditions under which are obtained, together with examples of spaces for which the relationship fails. (Here denotes the Stone-Čech compactification of .) The role of as a "projective object" in certain topological categories is investigated.

**[B]**B. Banaschewski,*Projective covers in certain categories*, General Topology and its Relation to Modern Analysis and Algebra. II (Prague, 1966), Academic Press, New York, 1967.**[BH]**R. L. Blair and A. W. Hager,*Extensions of zero-sets and of real-valued functions*, Math. Z.**136**(1974), 41-57. MR**0385793 (52:6652)****[C]**H. Cohen,*The*-*extremally disconnected spaces as projectives*, Canad. J. Math.**16**(1964), 253-260. MR**0161294 (28:4502)****[CHN]**W. W. Comfort, N. Hindman, and S. Negrepontis, -*spaces and their products with*-*spaces*, Pacific J. Math.**28**(1969), 489-502. MR**0242106 (39:3440)****[D]**F. Dashiell,*Non-weakly compact operators from**lattices with applications to Baire classes*, Trans. Amer. Math. Soc.**266**(1981), 397-413. MR**617541 (83d:47043)****[D]**-,*The quasi*-*cover of a compact space and strongly irreducible surjections*, Abstracts Amer. Math. Soc.**3**(1982), 96.**[D]**-,*The quasi*-*cover of a compact space and strongly irreducible surjections*, unpublished manuscript.**[DF]**A. Dow and O. Forster,*Absolute*-*embedding of*-*spaces*, Pacific J. Math.**98**(1982), 63-71. MR**644938 (83c:54019)****[DHH]**F. Dashiell, A. W. Hager and M. Henriksen,*Order-Cauchy completions of rings and vector lattices of continuous functions*, Canad. J. Math.**32**(1980), 657-685. MR**586984 (81k:46020)****[F]**J. Flaschmeyer,*Topologische Projektivräume*, Math. Nachr.**26**(1963), 57-66. MR**0161298 (28:4506)****[FG]**N. J. Fine and L. Gillman,*Extensions of continuous functions in*, Bull. Amer. Math. Soc.**66**(1960), 376-381. MR**0123291 (23:A619)****[GJ]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand, Princeton, N. J., 1960. MR**0116199 (22:6994)****[H]**M. Henriksen,*A summary of results on order-Cauchy completions of rings and vector lattices of continuous functors*, Topology Proc.**4**(1979), 239-263. MR**583707 (82f:54024)****[Ha]**A. Hager,*The projective resolution of a compact space*, Proc. Amer. Math. Soc.**28**(1971), 262-266. MR**0271907 (42:6788)****[HI]**M. Henriksen and J. Isbell,*Some properties of compactifications*, Duke Math. J.**25**(1957), 83-105. MR**0096196 (20:2689)****[HdP]**C. B. Huijsmans and B. de Pagter,*On*-*ideals and*-*ideals in Riesz spaces*. II, Indag. Math.**42**(1980), 391-408. MR**597997 (83c:46004a)****[HdP]**-,*On*-*ideals and*-*ideals in Riesz spaces*. III, Indag. Math.**43**(1981), 409-422. MR**639858 (83c:46004b)****[HdP]**-,*Maximal*-*ideals in a Riesz space*, Canad. J. Math.**35**(19830, 1010-1029.**[I]**S. Iliadis,*Absolutes of Hausdorff spaces*, Soviet Math. Dokl.**4**(1963), 295-298. MR**0157354 (28:589a)****[LZ]**W. Luxemburg and A. Zaanen,*Riesz spaces*, North-Holland, Amsterdam, 1971.**[vM]**J van Mill,*An introduction to*, Handbook of Set-Theoretic Topology (Chapter 11), Elsevier, Amsterdam, 1984. MR**776630 (86f:54027)****[Pap]**F. Papengelou,*Order convergence and topological completion of commutative groups*, Math. Ann.**155**(1964), 81-107. MR**0174498 (30:4699)****[P]**Y. L. Park,*The quasi*-*cover as a filter space*, Houston J. Math.**9**(1983), 101-109. MR**699052 (84h:54011)****[PW]**J. R. Porter and R. G. Woods,*Absolutes and extensions of Hausdorff spaces*, Springer Universitext series (to appear). MR**687966 (85c:54018)****[S]**G. L. Seever,*Measures on*-*spaces*, Trans. Amer. Math. Soc.**133**(1968), 269-280. MR**0226386 (37:1976)****[V]**J. Vermeer,*On perfect irreducible preimages*, Topology Proc.**9**(1984). MR**781560 (86f:54024)****[V]**-,*Expansions of*-*closed spaces*, Doctoral Dissertation, Vrije Universiteit, Amsterdam, The Netherlands, 1983.**[V]**-,*The smallest basically disconnected pre-image of a space*, Topology Appl.**17**(1984), 217-232. MR**752272 (85m:54039)****[Vek]**A. K. Veksler, -*points*, -*sets*, -*spaces*.*A new class of order continuous measures and functionals*, Soviet Math. Dokl.**4**(1973), 1443-1450.**[Vek]**-,*Absolutes and vector lattices*, Proc. Conf. Topology and Measure. IV (Trassenheide, G. D. R. 1983), 1984, pp. 217-235. MR**824033 (87e:46013)****[Wa]**R. C. Walker,*The Stone-Čech compactification*, Springer-Verlag, New York, 1974. MR**0380698 (52:1595)****[War]**N. M. Warren,*Properties of Stone-Čech compactifications of discrete spaces*, Proc. Amer. Math. Soc.**33**(1972), 599-606. MR**0292035 (45:1123)****[W]**R. G. Woods,*A survey of absolutes of topological spaces*, Topological Structures. II, Math. Centrum Tract no. 116, 1979, pp. 323-362. MR**565852 (81d:54019)****[ZK]**V. K. Zakharov and A. V. Koldunov,*The sequential absolute and its characterizations*, Soviet Math. Dokl.**22**(1980), 70-74. MR**581394 (82g:54018)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54G05

Retrieve articles in all journals with MSC: 54G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0902798-0

Keywords:
Quasi -space,
cover,
projective cover

Article copyright:
© Copyright 1987
American Mathematical Society