Quasi -covers of Tychonoff spaces

Authors:
M. Henriksen, J. Vermeer and R. G. Woods

Journal:
Trans. Amer. Math. Soc. **303** (1987), 779-803

MSC:
Primary 54G05

DOI:
https://doi.org/10.1090/S0002-9947-1987-0902798-0

MathSciNet review:
902798

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Tychonoff topological space is called a quasi -space if each dense cozero-set of is -embedded in . In Canad. J. Math. **32** (1980), 657-685 Dashiell, Hager, and Henriksen construct the "minimal quasi -cover" of a compact space as an inverse limit space, and identify the ring as the order-Cauchy completion of the ring . *In On perfect irreducible preimages*, Topology Proc. **9** (1984), 173-189, Vermeer constructed the minimal quasi -cover of an arbitrary Tychonoff space.

In this paper the minimal quasi -cover of a compact space is constructed as the space of ultrafilters on a certain sublattice of the Boolean algebra of regular closed subsets of . The relationship between and is studied in detail, and broad conditions under which are obtained, together with examples of spaces for which the relationship fails. (Here denotes the Stone-Čech compactification of .) The role of as a "projective object" in certain topological categories is investigated.

**[B]**B. Banaschewski,*Projective covers in certain categories*, General Topology and its Relation to Modern Analysis and Algebra. II (Prague, 1966), Academic Press, New York, 1967.**[BH]**Robert L. Blair and Anthony W. Hager,*Extensions of zero-sets and of real-valued functions*, Math. Z.**136**(1974), 41–52. MR**0385793**, https://doi.org/10.1007/BF01189255**[C]**Henry B. Cohen,*The 𝑘-extremally disconnected spaces as projectives*, Canad. J. Math.**16**(1964), 253–260. MR**0161294**, https://doi.org/10.4153/CJM-1964-024-9**[CHN]**W. W. Comfort, Neil Hindman, and S. Negrepontis,*𝐹′-spaces and their product with 𝑃-spaces*, Pacific J. Math.**28**(1969), 489–502. MR**0242106****[D]**Frederick K. Dashiell Jr.,*Nonweakly compact operators from order-Cauchy complete 𝐶(𝑆) lattices, with application to Baire classes*, Trans. Amer. Math. Soc.**266**(1981), no. 2, 397–413. MR**617541**, https://doi.org/10.1090/S0002-9947-1981-0617541-7**[D]**-,*The quasi*-*cover of a compact space and strongly irreducible surjections*, Abstracts Amer. Math. Soc.**3**(1982), 96.**[D]**-,*The quasi*-*cover of a compact space and strongly irreducible surjections*, unpublished manuscript.**[DF]**Alan Dow and Ortwin Förster,*Absolute 𝐶*-embedding of 𝐹-spaces*, Pacific J. Math.**98**(1982), no. 1, 63–71. MR**644938****[DHH]**F. Dashiell, A. Hager, and M. Henriksen,*Order-Cauchy completions of rings and vector lattices of continuous functions*, Canad. J. Math.**32**(1980), no. 3, 657–685. MR**586984**, https://doi.org/10.4153/CJM-1980-052-0**[F]**Jürgen Flachsmeyer,*Topologische Projektivräume*, Math. Nachr.**26**(1963), 57–66 (German). MR**0161298**, https://doi.org/10.1002/mana.19630260106**[FG]**N. J. Fine and L. Gillman,*Extension of continuous functions in 𝛽𝑁*, Bull. Amer. Math. Soc.**66**(1960), 376–381. MR**0123291**, https://doi.org/10.1090/S0002-9904-1960-10460-0**[GJ]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[H]**M. Henriksen,*A summary of results on order-Cauchy completions of rings and vector lattices of continuous functions*, Topology Proc.**4**(1979), no. 1, 239–263 (1980). Edited by Ross Geoghegan. MR**583707****[Ha]**Anthony W. Hager,*The projective resolution of a compact space*, Proc. Amer. Math. Soc.**28**(1971), 262–266. MR**0271907**, https://doi.org/10.1090/S0002-9939-1971-0271907-5**[HI]**Melvin Henriksen and J. R. Isbell,*Some properties of compactifications*, Duke Math. J.**25**(1958), 83–105. MR**0096196****[HdP]**C. B. Huijsmans and B. de Pagter,*On 𝑧-ideals and 𝑑-ideals in Riesz spaces. II*, Nederl. Akad. Wetensch. Indag. Math.**42**(1980), no. 4, 391–408. MR**597997****[HdP]**B. de Pagter,*On 𝑧-ideals and 𝑑-ideals in Riesz spaces. III*, Nederl. Akad. Wetensch. Indag. Math.**43**(1981), no. 4, 409–422. MR**639858****[HdP]**-,*Maximal*-*ideals in a Riesz space*, Canad. J. Math.**35**(19830, 1010-1029.**[I]**S. Iliadis,*Absolutes of Hausdorff spaces*, Dokl. Akad. Nauk SSSR**149**(1963), 22–25 (Russian). MR**0157354****[LZ]**W. Luxemburg and A. Zaanen,*Riesz spaces*, North-Holland, Amsterdam, 1971.**[vM]**Jan van Mill,*An introduction to 𝛽𝜔*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR**776630****[Pap]**Fredos Papangelou,*Order convergence and topological completion of commutative lattice-groups*, Math. Ann.**155**(1964), 81–107. MR**0174498**, https://doi.org/10.1007/BF01344076**[P]**Young Lim Park,*The quasi-𝐹 cover as a filter space*, Houston J. Math.**9**(1983), no. 1, 101–109. MR**699052****[PW]**Jack R. Porter and R. Grant Woods,*Extensions of Hausdorff spaces*, Pacific J. Math.**103**(1982), no. 1, 111–134. MR**687966****[S]**G. L. Seever,*Measures on 𝐹-spaces*, Trans. Amer. Math. Soc.**133**(1968), 267–280. MR**0226386**, https://doi.org/10.1090/S0002-9947-1968-0226386-5**[V]**J. Vermeer,*On perfect irreducible preimages*, Proceedings of the 1984 topology conference (Auburn, Ala., 1984), 1984, pp. 173–191. MR**781560****[V]**-,*Expansions of*-*closed spaces*, Doctoral Dissertation, Vrije Universiteit, Amsterdam, The Netherlands, 1983.**[V]**J. Vermeer,*The smallest basically disconnected preimage of a space*, Topology Appl.**17**(1984), no. 3, 217–232. MR**752272**, https://doi.org/10.1016/0166-8641(84)90043-9**[Vek]**A. K. Veksler, -*points*, -*sets*, -*spaces*.*A new class of order continuous measures and functionals*, Soviet Math. Dokl.**4**(1973), 1443-1450.**[Vek]**A. I. Veksler,*Absolutes and vector lattices*, Proceedings of the conference Topology and measure, IV, Part 2 (Trassenheide, 1983) Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1984, pp. 217–235. MR**824033****[Wa]**Russell C. Walker,*The Stone-Čech compactification*, Springer-Verlag, New York-Berlin, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR**0380698****[War]**Nancy M. Warren,*Properties of Stone-Čech compactifications of discrete spaces*, Proc. Amer. Math. Soc.**33**(1972), 599–606. MR**0292035**, https://doi.org/10.1090/S0002-9939-1972-0292035-X**[W]**R. Grant Woods,*A survey of absolutes of topological spaces*, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 323–362. MR**565852****[ZK]**ValeriĭKonstantinovich Zakharov and A. V. Koldunov,*Sequential absolute and its characterization*, Dokl. Akad. Nauk SSSR**253**(1980), no. 2, 280–284 (Russian). MR**581394**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54G05

Retrieve articles in all journals with MSC: 54G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0902798-0

Keywords:
Quasi -space,
cover,
projective cover

Article copyright:
© Copyright 1987
American Mathematical Society