Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Invariance results for delay and Volterra equations in fractional order Sobolev spaces


Authors: F. Kappel and K. Kunisch
Journal: Trans. Amer. Math. Soc. 304 (1987), 1-51
MSC: Primary 45D05; Secondary 34K15, 45J05, 46E35
MathSciNet review: 906804
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Invariance of the trajectories of infinite delay- and Volterra-type equations in fractional order Sobolev spaces are derived under minimal assumptions on the problem data. Properties of fractional order Sobolev spaces defined over intervals are summarized.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Balakrishnan, Applied functional analysis, Springer, New York, 1976. MR 0470699 (57:10445)
  • [2] H. T. Banks, J. A. Burns and E. M. Cliff, Parameter estimation and identification for systems with delays, SIAM J. Control Optim. 19 (1981), 791-828. MR 634954 (84e:93050)
  • [3] H. T. Banks and P. L. Daniel, Estimation of delays and other parameters in nonlinear functional differential equations, SIAM J. Control Optim. 21 (1983), 895-915. MR 719519 (85g:65097)
  • [4] J. A. Burns., T. L. Herdman and H. W. Stech, Linear functional differential equations as semigroups on product spaces, SIAM J. Math. Anal. 14 (1983), 98-116. MR 686237 (84e:34096)
  • [5] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Springer, Berlin, 1967. MR 0230022 (37:5588)
  • [6] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. MR 0492721 (58:11793)
  • [7] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer, Heidelberg, 1965. MR 0367121 (51:3363)
  • [8] F. Kappel, Approximation of neutral functional differential equations in the state space $ {{\mathbf{R}}^n} \times {L^2}$, Colloq. Math. Soc. Janos Bolyai, 30, Qualitative Theory of Differential Equations, Vol. I (M. Farkas, ed.), Janos Bolyai Math. Soc. and North-Holland, Amsterdam, 1982, pp. 463-506. MR 680607 (84m:34095)
  • [9 F] Kappel and K. Kunisch, An approximation scheme for parameter estimation in infinite delay equations of Volterra type. Numerical results, Technical Report, Institutes for Mathematics, University and Technical University of Graz, No. 51, 1984.
  • [10] F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations 37 (1980), 141-183. MR 587220 (81j:34117)
  • [11] J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Vol. I, Springer, Heidelberg, 1972.
  • [12] I. Lasiecka and A. Manitius, Differentiability and convergence rates of approximating semigroups for retarded functional differential equations, SIAM J. Numer. Anal. (to appear). MR 954790 (89i:65062)
  • [13] C. Sadosky, Interpolation of operators and singular integrals. An introduction to harmonic analysis, Dekker, New York, 1979. MR 551747 (81d:42001)
  • [14] K. Schumacher, Remarks on semilinear partial functional equations with infinite delay, J. Math. Anal. Appl. 80 (1981), 261-290. MR 614255 (82h:47061)
  • [15] O. Staffans, Extended initial and forcing function semigroups generated by a functional equation, SIAM J. Math. Anal. 16 (1985), 1034-1048. MR 800795 (87a:34076)
  • [16] Olof J. Staffans, Semigroups generated by a neutral functional-differential equation, SIAM J. Math. Anal. 17 (1986), no. 1, 46–57. MR 819211 (87c:34133), http://dx.doi.org/10.1137/0517006
  • [17] Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903 (80i:46032b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45D05, 34K15, 45J05, 46E35

Retrieve articles in all journals with MSC: 45D05, 34K15, 45J05, 46E35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0906804-9
PII: S 0002-9947(1987)0906804-9
Article copyright: © Copyright 1987 American Mathematical Society