Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Application of group cohomology to space constructions


Authors: Paul Igodt and Kyung Bai Lee
Journal: Trans. Amer. Math. Soc. 304 (1987), 69-82
MSC: Primary 57S30; Secondary 20J10
DOI: https://doi.org/10.1090/S0002-9947-1987-0906806-2
MathSciNet review: 906806
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: From a short exact sequence of crossed modules $ 1 \to K \to H \to \bar H \to 1$ and a $ 2$-cocycle $ (\phi ,\,h) \in {Z^2}(G;\,H)$, a $ 4$-term cohomology exact sequence $ H_{ab}^1(G;\,Z) \to H_{(\bar \phi ,\,\bar h)}^1(G;\,\bar H,\bar Z)\mathop \to ... ...(G;\,K):{\psi _{{\text{out}}}} = {\phi _{{\text{out}}}}\} \to H_{ab}^2(G;\,Z)} $ is obtained. Here the first and the last term are the ordinary (=abelian) cohomology groups, and $ Z$ is the center of the crossed module $ H$. The second term is shown to be in one-to-one correspondence with certain geometric constructions, called Seifert fiber space construction. Therefore, it follows that, if both the end terms vanish, the geometric construction exists and is unique.


References [Enhancements On Off] (What's this?)

  • [CR] P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Proc. Inst., Univ. of George, 1969, Markham, Chicago, Ill., 1970, pp. 227-264. MR 0271958 (42:6839)
  • [D] P. Dedecker, Algebre homologique non abelienne, Extr. Coll. Topologie, CBRM, Brussels, 1966. MR 0217146 (36:237)
  • [I] P. Igodt, Almost short exact sequences in non-abelian cocycles (to appear).
  • [KLR] Y. Kamishima, K. B. Lee and F. Raymond, The Seifert construction and its applications to infranilmanifolds, Quart. J. Math. Oxford Ser. 34 (1983), 433-452. MR 723280 (85k:57038)
  • [L] K. B. Lee, Aspherical manifolds with virtually $ 3$-step nilpotent fundamental group, Amer. J. Math. 105 (1983), 1435-1453. MR 722005 (85d:57032)
  • [LR] R. Lavendhomme and J. R. Roisin, Cohomologie non-abelienne de structures algebriques, J. Algebra 67 (1980), 385-414. MR 602071 (82g:18004)
  • [LR1] K. B. Lee and F. Raymond, The role of Seifert fiber spaces in transformation groups, Contemp. Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1986, pp. 367-425. MR 780974 (86j:57015)
  • [LR2] K. B. Lee and F. Raymond, Seifert fiberings whose model is a principal fibering, in preparation.
  • [M] S. Mac Lane, Homology, Springer-Verlag, 1963. MR 1344215 (96d:18001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S30, 20J10

Retrieve articles in all journals with MSC: 57S30, 20J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0906806-2
Keywords: Nonabelian group cohomology, Seifert fiber spaces, infranil-manifolds
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society