Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Ideals of holomorphic functions with $ C\sp \infty$ boundary values on a pseudoconvex domain


Authors: Edward Bierstone and Pierre D. Milman
Journal: Trans. Amer. Math. Soc. 304 (1987), 323-342
MSC: Primary 32F15; Secondary 32E25, 35N15, 46J15
MathSciNet review: 906818
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give natural sufficient conditions for the solution of several problems concerning division in the space $ {\mathcal{A}^\infty }(\Omega )$ of holomorphic functions with $ {\mathcal{C}^\infty }$ boundary values on a pseudoconvex domain $ \Omega $ with smooth boundary. The sufficient conditions come from upper semicontinuity with respect to the analytic Zariski topology of a local invariant of coherent analytic sheaves (the "invariant diagram of initial exponents"), and apply to division in the space of $ {\mathcal{C}^\infty }$ Whitney functions on an arbitrary closed set. Our theorem on division in $ {\mathcal{A}^\infty }(\Omega )$ follows using Kohn's theorem on global regularity in the $ \bar \partial $-Neumann problem.


References [Enhancements On Off] (What's this?)

  • [1] E. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), 127-140. MR 734998 (85h:32022)
  • [2] E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. 116 (1982), 541-558. MR 678480 (84a:58016)
  • [3] -, Relations among analytic functions. I, II, Ann. Inst. Fourier (Grenoble) 37 (1987) (to appear). MR 894566 (88g:32013a)
  • [4] E. Bierstone and G. W. Schwarz, Continuous linear division and extension of $ {\mathcal{C}^\infty }$ functions, Duke Math. J. 50 (1983), 233-271. MR 700140 (86b:32010)
  • [5] J. Briançon, Weierstrass préparé à la Hironaka, Astérisque 7, 8 (1973), 67-73.
  • [6] D. W. Catlin, Global regularity of the $ \bar \partial $-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R. I., 1984, pp. 39-49. MR 740870 (85j:32033)
  • [7] P. De Bartolomeis and G. Tomassini, Finitely generated ideals in $ {A^\infty }(D)$, Adv. in Math. 46 (1982), 162-170. MR 679906 (84a:32025)
  • [8] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies, No. 75, Princeton Univ. Press, Princeton, N. J., 1972. MR 0461588 (57:1573)
  • [9] A. Galligo, A propos du théorème de préparation de Weierstrass, Fonctions de Plusieurs Variables Complexes, Séminaire F. Norguet, Octobre 1970--Décembre 1973, pp. 543-579, Lecture Notes in Math., vol. 409, Springer, Berlin-Heidelberg-New York, 1974. MR 0402102 (53:5924)
  • [10] R. Gay et A. Sebbar, Division et extension dans l'algèbre $ {A^\infty }(\Omega )$ d'un ouvert pseudo-convexe à bord lisse de $ {{\mathbf{C}}^n}$, Math. Z. 189 (1985), 421-447. MR 783566 (86e:32020)
  • [11] H. Grauert, Über die Deformation isolierter Singularitäten analytischer Mengen, Invent Math. 15 (1972), 171-198. MR 0293127 (45:2206)
  • [12] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 0180696 (31:4927)
  • [13] H. Hironaka, Idealistic exponents of singularity, Algebraic Geometry (J. J. Sylvester Symposium, Johns Hopkins Univ., Baltimore, Md., 1976), Johns Hopkins Univ. Press, Baltimore, Md., 1977, pp. 52-125. MR 0498562 (58:16661)
  • [14] J. J. Kohn, Global regularity for $ \bar \partial $ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 0344703 (49:9442)
  • [15] -, Methods of partial differential equations in complex analysis, Proc. Sympos. Pure Math., vol. 30, Part 1, Amer. Math. Soc., Providence, R. I., 1977, pp. 215-237. MR 0477156 (57:16699)
  • [16] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Etudes Sci., Bures-sur-Yvette, 1964.
  • [17] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Bombay, 1966. MR 0212575 (35:3446)
  • [18] J. Merrien, Faisceaux analytiques semi-cohérents, Ann. Inst. Fourier (Grenoble) 30 (1980), 165-219. MR 599629 (82f:32018)
  • [19] A. Nagel, Flatness criteria for modules of holomorphic functions over $ {\mathcal{O}_n}$, Duke Math. J. 40 (1973), 433-448. MR 0344517 (49:9256)
  • [20] -, On algebras of holomorphic functions with $ {\mathcal{C}^\infty }$ boundary values, Duke Math. J. 41 (1974), 527-535. MR 0350067 (50:2560)
  • [21] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., vol. 25, Springer, Berlin-Heidelberg-New York, 1966. MR 0217337 (36:428)
  • [22] J. Cl. Tougeron, Idéaux de fonctions différentiables, Springer, Berlin-Heidelberg-New York, 1972. MR 0440598 (55:13472)
  • [23] -, Fonctions composées différentiables: cas algébrique, Ann. Inst. Fourier (Grenoble) 30 (1980), 51-74. MR 599624 (82e:58020)
  • [24] D. Vogt, Subspaces and quotient spaces of $ (s)$, Functional Analysis: Surveys and Recent Results (Proc. Conf. Paderborn, 1976), North-Holland Math. Studies, Vol. 27, North-Holland, Amsterdam, 1977, pp. 167-187. MR 0625306 (58:30009)
  • [25] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. MR 592388 (81k:46002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F15, 32E25, 35N15, 46J15

Retrieve articles in all journals with MSC: 32F15, 32E25, 35N15, 46J15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0906818-9
PII: S 0002-9947(1987)0906818-9
Article copyright: © Copyright 1987 American Mathematical Society