Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

All infinite groups are Galois groups over any field
HTML articles powered by AMS MathViewer

by Manfred Dugas and Rüdiger Göbel PDF
Trans. Amer. Math. Soc. 304 (1987), 355-384 Request permission

Abstract:

Let $G$ be an arbitrary monoid with $1$ and right cancellation, and $K$ be a given field. We will construct extension fields $F \supseteq K$ with endomorphism monoid End $F$ isomorphic to $G$ modulo Frobenius homomorphisms. If $G$ is a group, then Aut $F = G$. Let ${F^G}$ denote the fixed elements of $F$ under the action of $G$. In the case that $G$ is an infinite group, also ${F^G} = K$ and $G$ is the Galois group of $F$ over $K$. If $G$ is an arbitrary group, and $G = 1$, respectively, this answers an open problem (R. Baer 1967, E. Fried, C. U. Jensen, J. Thompson) and if $G$ is infinite, the result is an infinite analogue of the still unsolved Hilbert-Noether conjecture inverting Galois theory. Observe that our extensions $K \subset F$ are not algebraic. We also suggest to consider the case $K = {\mathbf {C}}$ and $G = \{ 1\}$.
References
    N. Bourbaki, Algebra, Part 1, Addison-Wesley, Reading, Mass., 1974.
  • A. L. S. Corner and Rüdiger Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), no. 3, 447–479. MR 779399, DOI 10.1112/plms/s3-50.3.447
  • Max Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in Mathematics, Vol. 314, Springer-Verlag, Berlin-New York, 1973. MR 0344231
  • Manfred Dugas and Rüdiger Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), no. 2, 319–336. MR 670040, DOI 10.1112/plms/s3-45.2.319
  • Manfred Dugas and Rüdiger Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), no. 4, 451–470. MR 682667, DOI 10.1007/BF01182384
  • —, Field extensions in $L$,—A solution of C. U. Jensen’s $\$ 25$-problem, (Proc. Oberwolfach, 1985), Abelian Group Theory (R. Göbel and E. A. Walker, eds.), Gordon and Breach, London, 1986. —, Field extensions, Notices Amer. Math. Soc. 32 (1985), 482.
  • Manfred Dugas, Adolf Mader, and Charles Vinsonhaler, Large $E$-rings exist, J. Algebra 108 (1987), no. 1, 88–101. MR 887193, DOI 10.1016/0021-8693(87)90123-2
  • J. G. Thompson, Rational rigidity of $G_2(5)$, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 321–322. MR 817265
  • B. Franzen and R. Göbel, Prescribing endomorphism ringsthe cotorsion-free case, Pacific J. Math. (to appear).
  • E. Fried, Automorphism group of integral domains fixing a given subring, Algebra Universalis 7 (1977), no. 3, 373–387. MR 444635, DOI 10.1007/BF02485446
  • E. Fried, A comment on automorphism groups of fields, Studia Sci. Math. Hungar. 14 (1979), no. 4, 315–317. MR 685897
  • E. Fried and J. Kollár, Automorphism groups of fields, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 293–303. MR 660867
  • —, Automorphism group of algebraic number fields, Math. Z. 163 (1978), 121-123.
  • M. Fried, A note on automorphism groups of algebraic number fields, Proc. Amer. Math. Soc. 80 (1980), no. 3, 386–388. MR 580989, DOI 10.1090/S0002-9939-1980-0580989-8
  • William Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss. MR 0313252
  • Wulf-Dieter Geyer, Jede endliche Gruppe ist Automorphismengruppe einer endlichen Erweiterung $K|\textbf {Q}$, Arch. Math. (Basel) 41 (1983), no. 2, 139–142 (German). MR 719416, DOI 10.1007/BF01196869
  • R. Göbel and S. Shelah, Torsion-free modules. II, Fund. Math. (to appear).
  • Rüdiger Göbel, Wie weit sind Moduln vom Satz von Krull-Remak-Schmidt entfernt?, Jahresber. Deutsch. Math.-Verein. 88 (1986), no. 1, 11–49 (German). MR 829402
  • J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80–102. MR 119193, DOI 10.1007/BF01369667
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, J. Reine Angew. Math. 110 (1892), 104-129.
  • Willem Kuyk, The construction of fields with infinite cyclic automorphism group, Canadian J. Math. 17 (1965), 665–668. MR 176978, DOI 10.4153/CJM-1965-066-4
  • Daniel J. Madden and Robert C. Valentini, The group of automorphisms of algebraic function fields, J. Reine Angew. Math. 343 (1983), 162–168. MR 705883, DOI 10.1515/crll.1983.343.162
  • B. H. Matzat, Über das Umkehrproblem der Galoisschen Theorie, Jahresber. Deutsch. Math.-Verein. (1986).
  • Emmy Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1917), no. 1, 221–229 (German). MR 1511893, DOI 10.1007/BF01457099
  • Péter Pröhle, Does the Frobenius endomorphism always generate a direct summand in the endomorphism monoids of fields of prime characteristic?, Bull. Austral. Math. Soc. 30 (1984), no. 3, 335–356. MR 766793, DOI 10.1017/S0004972700002070
  • P. Pröhle, unpublished.
  • I. R. Šafarevič, Construction of fields of algebraic numbers with given solvable Galois group, Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954), 525–578 (Russian). MR 0071469
  • Andrzej Schinzel, Selected topics on polynomials, University of Michigan Press, Ann Arbor, Mich., 1982. MR 649775
  • Saharon Shelah, Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 513226
  • S. Shelah, Existence of rigid-like families of abelian $p$-groups, Model theory and algebra (A memorial tribute to Abraham Robinson), Lecture Notes in Math., Vol. 498, Springer, Berlin, 1975, pp. 384–402. MR 0412299
  • Saharon Shelah, A combinatorial principle and endomorphism rings. I. On $p$-groups, Israel J. Math. 49 (1984), no. 1-3, 239–257. MR 788269, DOI 10.1007/BF02760650
  • Saharon Shelah, A combinatorial theorem and endomorphism rings of abelian groups. II, Abelian groups and modules (Udine, 1984) CISM Courses and Lect., vol. 287, Springer, Vienna, 1984, pp. 37–86. MR 789808, DOI 10.1007/978-3-7091-2814-5_{3}
  • Henning Stichtenoth, Zur Realisierbarkeit endlicher Gruppen als Automorphismengruppen algebraischer Funktionenkörper, Math. Z. 187 (1984), no. 2, 221–225 (German). MR 753434, DOI 10.1007/BF01161706
  • Richard G. Swan, Noether’s problem in Galois theory, Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982) Springer, New York-Berlin, 1983, pp. 21–40. MR 713790
  • J. G. Thompson, Some finite groups of type ${G_2}$ which appear as Galois groups over $Q$, J. Algebra (to appear). —, Some finite groups which appear as Galois groups over Q, J. Algebra (to appear).
  • David Winter, The structure of fields, Graduate Texts in Mathematics, No. 16, Springer-Verlag, New York-Heidelberg, 1974. MR 0389873
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 12F10, 12F20, 20F29
  • Retrieve articles in all journals with MSC: 12F10, 12F20, 20F29
Additional Information
  • © Copyright 1987 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 304 (1987), 355-384
  • MSC: Primary 12F10; Secondary 12F20, 20F29
  • DOI: https://doi.org/10.1090/S0002-9947-1987-0906820-7
  • MathSciNet review: 906820