Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Manifolds on which only tori can act

Authors: Kyung Bai Lee and Frank Raymond
Journal: Trans. Amer. Math. Soc. 304 (1987), 487-499
MSC: Primary 57S10; Secondary 57S25
MathSciNet review: 911081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A list of various types of connected, closed oriented manifolds are given. Each of the manifolds support some of the well-known compact transformation group properties enjoyed by aspherical manifolds. We list and describe these classes and their transformation group properties in increasing generality. We show by various examples that these implications can never be reversed. This establishes a hierarchy in terms of spaces in one direction and the properties they enjoy in the opposite direction.

References [Enhancements On Off] (What's this?)

  • [A] M. A. Armstrong, Calculating the fundamental group of an orbit space, Proc. Amer. Math. Soc. 84 (1982), 267-271. MR 637181 (83a:55019)
  • [AB] A. Assadi and D. Burghelea, Examples of asymmetric differentiable manifolds, Math. Ann. 255 (1981), 423-430. MR 615861 (83a:57053)
  • [AH] M. Atiyah and F. Hirzebruch, Spin-manifolds and group actions. Essay on topology and related topics, Springer, Berlin and New York, 1970, pp. 18-28. MR 0278334 (43:4064)
  • [B1] E. M. Bloomberg, Manifolds with no periodic homeomorphisms, Trans. Amer. Math. Soc. 202 (1975), 67-78. MR 0358842 (50:11301)
  • [BDH] G. Baumslag, E. Dyer and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), 1-47. MR 549702 (81i:55012)
  • [BH] W. Browder and W. C. Hsiang, $ G$-actions and the fundamental group, Invent. Math. 65 (1982), 411-424. MR 643560 (83d:57026)
  • [C] P. E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Math., vol. 738, Springer, 1979. MR 548463 (81f:57018)
  • [CR1] P. E. Conner and Frank Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, 1969), Markham, Chicago, Ill., 1970, pp. 227-264. MR 0271958 (42:6839)
  • [CR2] -, Manifolds with few periodic homeomorphisms, Proc. Second Conference on Compact Transformation Groups, Part II, Lecture Notes in Math., vol. 299, Springer, 1972, pp. 1-75. MR 0358835 (50:11294)
  • [CR3] -, Injective actions of toral groups, Topology 10 (1970), 283-296.
  • [CR4] -, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), 36-85. MR 0467777 (57:7629)
  • [CR5] -, Holomorphic Seifert fiberings, Proc. Second Conference on Compact Transformation Groups, Part II, Lecture Notes in Math., vol. 299, Springer, 1972, pp. 124-204. MR 0590802 (58:28698)
  • [DS] H. Donnelly and R. Schultz, Compact group actions and maps into aspherical manifolds, Topology 21 (1982), 443-455. MR 670746 (84k:57024)
  • [F] E. Floyd, Orbits spaces of finite transformation groups. II, Duke Math. J. 22 (1955), 33-38. MR 0066642 (16:610b)
  • [GLO] D. Gottlieb, K. B. Lee and M. Ozaydin, Compact group actions and maps into $ K(\pi ,\,1)$-spaces, Trans. Amer. Math. Soc. 287 (1985), 419-429. MR 766228 (86h:57034)
  • [Gr] M. Gromov, Volume and bounded cohomology, Inst. Hautes Etude Sci. Publ. Math. 56 (1982), 213-307. MR 686042 (84h:53053)
  • [KK] H. T. Ku and M. C. Ku, Group actions on aspherical $ {A_k}(N)$-manifolds, Trans. Amer. Math. Soc. 278 (1983), 841-859. MR 701526 (85b:57042)
  • [LR1] K. B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geom. 16 (1982), 255-269. MR 638791 (84k:57027)
  • [LR2] -, Geometric realization of group extensions by the Seifert construction, Contemporary Math., vol. 33, Amer. Math. Soc., Providence, R. I., 1984, pp. 353-411. MR 767121 (86h:57043)
  • [LY] H. B. Lawson and S. T. Yau, Compact manifolds of non-positive curvature, J. Differential Geom. 7 (1972), 211-228. MR 0334083 (48:12402)
  • [MY] W. Meeks and S. T. Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980), 441-484. MR 595203 (83d:53045)
  • [NR] W. Neumann and F. Raymond, Seifert manifolds, plumbing, $ \mu $-invariant and orientation reversing maps, Alg. and Geom. Topology (Proc. Santa Barbara, 1977), Lecture Notes in Math., vol. 664, Springer, 1978, pp. 163-196. MR 518415 (80e:57008)
  • [Sch1] R. Schultz, Group actions on hypertoral manifolds. I, Topology Symposium (Siegen 1979), Lecture Notes in Math., vol. 788, Springer, pp. 364-377. MR 585669 (81m:57030)
  • [Sch2] -, Group actions on hypertoral manifolds. II, J. Reine Angew. Math. 325 (1981), 75-86. MR 618547 (82m:57022)
  • [Sp] E. Spanier, Algebraic topology, McGraw-Hill, 1966. MR 0210112 (35:1007)
  • [SY] R. Schoen and S. T. Yau, Compact group actions and the topology of manifolds with non-positive curvature, Topology 18 (1979), 361-380. MR 551017 (81a:53044)
  • [WW] R. Washiyama and T. Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan 35 (1983), 53-58. MR 679074 (85d:57034)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S10, 57S25

Retrieve articles in all journals with MSC: 57S10, 57S25

Additional Information

Keywords: Compact transformation group, aspherical manifold, covering space, ends, $ K$-manifold, $ K(\pi ,\,1)$, essential manifold, admissible, injective action, inner action, compact Lie group, hyperaspherical manifold, lens space, spherical space form, toral action
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society