Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Comparison between analytic capacity and the Buffon needle probability


Author: Takafumi Murai
Journal: Trans. Amer. Math. Soc. 304 (1987), 501-514
MSC: Primary 30C85; Secondary 28A12
DOI: https://doi.org/10.1090/S0002-9947-1987-0911082-0
MathSciNet review: 911082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that analytic capacity and the Buffon needle probability are not comparable.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Davie and B. $ \Phi$ksendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982), 127-152. MR 674169 (84h:31001)
  • [2] G. David, A lower estimate for the norm of the Cauchy integral operator on Lipschitz curves, preprint.
  • [3] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., vol. 297, Springer-Verlag, 1972. MR 0454006 (56:12257)
  • [4] L. D. Ivanov, On sets of analytic capacity zero, Lecture Notes in Math., vol. 1043, Springer-Verlag, 1984, pp. 498-501.
  • [5] J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, 1983.
  • [6] D. E. Marshall, Removable sets for bounded analytic functions, Lecture Notes in Math., vol. 1043, Springer-Verlag, 1984, pp. 485-490.
  • [7] T. Murai, Boundedness of singular integral operators of Calderón type. VI, Nagoya Math. J. 102 (1986), 127-133. MR 846134 (88h:42019)
  • [8] L. A. Santaló, Introduction to integral geometry, Hermann, 1953. MR 0060840 (15:736d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C85, 28A12

Retrieve articles in all journals with MSC: 30C85, 28A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0911082-0
Keywords: Analytic capacity, the Buffon needle probability
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society