Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the elliptic equations $ \Delta u=K(x)u\sp \sigma$ and $ \Delta u=K(x)e\sp {2u}$


Authors: Kuo-Shung Cheng and Jenn-Tsann Lin
Journal: Trans. Amer. Math. Soc. 304 (1987), 639-668
MSC: Primary 35J60; Secondary 58G30
MathSciNet review: 911088
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give some nonexistence results for the equations $ \Delta u = K(x){u^\sigma }$ and $ \Delta u = K(x){e^{2u}}$ for $ K(x) \geqslant 0$.


References [Enhancements On Off] (What's this?)

  • [1] W.-Y. Ding and W.-M. Ni, On the elliptic equation $ \Delta u + K{u^{(n + 2) / (n - 2)}} = 0$ and related topics, Duke Math. J. 52 (1985), 485-506. MR 792184 (86k:35040)
  • [2] R. E. Edwards, Functional analysis, Holt, Rinehart and Winston, New York, 1965. MR 0221256 (36:4308)
  • [3] N. Kawano, T. Kusano and M. Naito, On the elliptic equation $ \Delta u = \phi (x)u\gamma $ in $ {{\mathbf{R}}^2}$, Proc. Amer. Math. Soc. 93 (1985), 73-78. MR 766530 (86e:35053)
  • [4] N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Z. 186 (1984), 287-297. MR 744820 (86b:35053)
  • [5] J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom. 10 (1975), 113-134. MR 0365409 (51:1661)
  • [6] J. B. Keller, On solutions of $ \Delta u = f(u)$, Comm. Pure Appl. Math. 10 (1957), 503-510. MR 0091407 (19:964c)
  • [7] T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equation with application to a parabolic initial value problem, Indiana Univ. Math. J. 34 (1985), 85-95. MR 773394 (86i:35048)
  • [8] T. Kusano, C. A. Swanson and H. Usami, Pairs of positive solutions of quasilinear elliptic equations in exterior domains, Pacific J. Math. 120 (1985), 385-399. MR 810778 (87g:35093)
  • [9] F.-H. Lin, On the elliptic equation $ {D_i}[{a_{ij}}(x){D_j}U] - k(x)U + K(x){U^p} = 0$, Proc. Amer. Math. Soc. 95 (1985), 219-226. MR 801327 (86k:35041)
  • [10] R. McOwen, On the equation $ \Delta u + K{e^{2u}} = f$ and prescribed negative curvature in $ {{\mathbf{R}}^2}$, J. Math. Anal. Appl. 103 (1984), 365-370. MR 762561 (86c:58155)
  • [11] -, Conformal metric in $ {{\mathbf{R}}^2}$ with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J. 34 (1985), 97-104.
  • [12] M. Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), 211-214. MR 750398 (86d:35047)
  • [13] W.-M. Ni, On the elliptic equation $ \Delta u + K(x){u^{(n + 2) / (n - 2)}} = 0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529. MR 662915 (84e:35049)
  • [14] -, On the elliptic equation $ \Delta u + k(x){e^{2u}} = 0$ and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), 343-352. MR 656628 (84g:58107)
  • [15] O. A. Oleinik, On the equation $ \Delta u + k(x){e^u} = 0$, Russian Math. Surveys 33 (1978), 243-244.
  • [16] D. H. Sattinger, Conformal metric in $ {{\mathbf{R}}^2}$ with prescribed curvature, Indiana Univ. Math. J. 22 (1972), 1-4. MR 0305307 (46:4437)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 58G30

Retrieve articles in all journals with MSC: 35J60, 58G30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0911088-1
PII: S 0002-9947(1987)0911088-1
Keywords: Semilinear elliptic equations
Article copyright: © Copyright 1987 American Mathematical Society