ON THE ELLIPTIC EQUATIONS $\Delta u = K(x)u^\sigma$ AND $\Delta u = K(x)e^{2u}$

KUO-SHUNG CHENG AND JENN-TSANN LIN

Abstract. We give some nonexistence results for the equations $\Delta u = K(x)u^\sigma$ and $\Delta u = K(x)e^{2u}$ for $K(x) > 0$.

1. Introduction. In this paper we study the elliptic equations

$$(1.1) \quad \Delta u = K(x)u^\sigma \quad \text{in } \mathbb{R}^n$$

and

$$(1.2) \quad \Delta u = K(x)e^{2u} \quad \text{in } \mathbb{R}^n,$$

where $\sigma > 1$ is a constant, $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ and $K(\cdot)$ is a bounded Hölder continuous function in \mathbb{R}^n. We are concerned with the existence problems of locally bounded and positive solutions for (1.1) and locally bounded solutions for (1.2).

These problems come from geometry. We give a brief description and refer the details to Kazdan and Warner [5] and Ni [13, 14]. Let (M, g) be a Riemannian manifold of dimension n, $n \geq 2$, and $K(\cdot)$ be a given function on M. We ask the following question: can one find a new metric g_1 on M such that K is the scalar curvature of g_1 and g_1 is conformal to g (i.e., $g_1 = \psi g$ for some function $\psi > 0$ on M)? In the case $n \geq 3$, we write $\psi = u^{4/(n-2)}$. Then this problem is equivalent to the problem of finding positive solutions of the equation

$$(1.3) \quad \frac{4(n-1)}{n-2} \Delta u - ku + Ku^{(n+2)/(n-2)} = 0,$$

where Δ, k are the Laplacian and scalar curvature in the g metric, respectively. In the case $M = \mathbb{R}^n$ and $g = (\delta_{ij})$, then $k = 0$ and equation (1.3) reduces to (1.1) with $\sigma = (n + 2)/(n - 2)$, after an appropriate scaling and sign changing of $K(\cdot)$. In the case $n = 2$, we write $\psi = e^{2u}$. Then this problem is equivalent to the problem of finding locally bounded solutions of the equation

$$(1.4) \quad \Delta u - k + Ke^{2u} = 0,$$

where Δ, k are the Laplacian and Gaussian curvature on M in the g metric. In the case $M = \mathbb{R}^2$ and $g = (\delta_{ij})$, we have $k = 0$ and equation (1.4) reduces to (1.2), after a sign changing of K.

Received by the editors July 23, 1986 and, in revised form, December 23, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 35J60; Secondary 45G10.
Key words and phrases. Semilinear elliptic equations.

Work of the first author was supported by the National Science Council of the Republic of China under contract NSC75-0208-M009-05.
In [13 and 14], Ni makes major contributions to the existence of solutions for (1.1) and (1.2). After these two papers, there are many improved results published, such as McOwen [10, 11], Naito [12], Kawano, Kusano and Naito [3], Kawano and Kusano [4], Kusano and Oharu [7], Ding and Ni [1], Kusano, Swanson and Usami [8] and Lin [9].

In this paper, we consider the case \(K(x) \geq 0 \) in (1.1) and (1.2). We obtain some nonexistence results which make the understanding of the case \(K(x) > 0 \) almost complete. We divide this paper into two parts. In Part I, we consider (1.1). Thus we consider the case (1.1) with \(n > 3 \) in §2, (1.1) with \(n = 2 \) in §3 and (1.1) with \(n = 1 \) in §4. We consider (1.2) in Part II. Thus we consider the case (1.2) with \(n > 3 \) in §5, (1.2) with \(n = 2 \) in §6 and (1.2) with \(n = 1 \) in §7.

We remark that the technique of the proof of the main nonexistence theorem is essentially equivalent to the proof of Keller [6]. We thank the referee for bringing the reference [6] to our attention.

Part I. \(\Delta u = K(x)u^p \)

2. The case \(n \geq 3 \). In this case, Ni [13] proves the main existence result: Let \(K \) be bounded. If \(|K(x)| \leq C/|x|^{2+\epsilon} \) at \(\infty \) for some constants \(C > 0 \) and \(\epsilon > 0 \), then equation (1.1) has infinitely many bounded solutions in \(\mathbb{R}^n \) with positive lower bounds. Later on, Naito [12] improves the result: If \(|K(x)| \leq \phi(|x|) \) for all \(x \in \mathbb{R}^n \) and \(\int_0^\infty t\phi(t)\,dt < \infty \), then equation (1.1) has infinite many bounded positive solutions which tend to a positive constant at \(\infty \). On the other hand, when \(K(x) \geq 0 \), Ni [13] proves a nonexistence result: If \(K(x) \geq C/|x|^{2-\epsilon} \) at \(\infty \) for some constants \(C > 0 \) and \(\epsilon > 0 \), then (1.1) does not possess any positive solution in \(\mathbb{R}^n \). Lin [9] proves that it is still true even \(\epsilon = 0 \). In view of Naito’s existence result, we expect that the following conjecture be true.

Conjecture. Let \(K(x) \geq \tilde{K}(|x|) \geq 0 \) for all \(x \in \mathbb{R}^n \) and \(\int_0^\infty s\tilde{K}(s)\,ds = \infty \). Then (1.1) does not possess any positive solution in \(\mathbb{R}^n \).

We give three theorems which almost answer this conjecture completely. Following Ni [13], we define the averages of \(u(x) > 0 \) and \(K(x) ^ 0 \) by \(\bar{u}(r) \) and \(\bar{K}(r) \),

\[
\bar{u}(r) = \frac{1}{\omega_n r^{n-1}} \int_{|x|=r} u(x)\,dS,
\]

\[
\bar{K}(r) = \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)^{\sigma/\mu}} \right)^{-\sigma/\mu},
\]

where \(dS \) denotes the volume element in the surface integral, \(\omega_n \) denotes the surface area of the unit sphere in \(\mathbb{R}^n \) and \(1/\mu + 1/\sigma = 1 \).

For the sake of completeness, we give another proof of Lin’s result of non-existence [9] in the following.

Theorem 2.1. Let \(K(x) \) be a locally Hölder continuous function. If \(K(x) \geq 0 \) and \(\bar{K}(r) \geq C/r^2 \) for \(r \) large for some constant \(C > 0 \), then equation (1.1) does not possess any positive solution in \(\mathbb{R}^n \).
ELLIPTIC EQUATIONS $\Delta u = K(x)u^\sigma$ AND $\Delta u = K(x)e^{2u}$

Proof. Let u be a positive solution of (1.1) in \mathbb{R}^n. Then from Ni [12, Lemma 3.21], we have

$$
\begin{aligned}
\begin{cases}
\bar{u}''(r) + \frac{n-1}{r} \bar{u}'(r) \geq \bar{K}(r) \bar{u}^\sigma(r) & \text{in } (0, \infty), \\
\bar{u}(0) = \alpha > 0, & \bar{u}'(0) = 0.
\end{cases}
\end{aligned}
$$

Hence we have

$$
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s) \, ds.
$$

Now assume that $\bar{K}(r) \geq C/r^2$ for $r \geq R_0$. Let $r > R_0$. Then from (2.4), we have

$$
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_{R_0}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s) \, ds
$$

$$
\geq \alpha + \frac{1}{n-2} \int_{R_0}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s) \, ds
$$

$$
\geq \alpha + \frac{\alpha^\sigma}{n-2} \cdot C \cdot \left[1 - \left(\frac{1}{2} \right)^{n-2} \right] \cdot \int_{R_0}^{r/2} \frac{1}{s} \, ds
$$

$$
\geq C_1 \log r
$$

for some $C_1 > 0$ and $r \geq R_1 > 2R_0$. For $R > R_1$ and $R \leq r \leq 2R$, we have

$$
1/2 \leq s/r \leq 1.
$$

Hence

$$
\left[1 - \left(\frac{s}{r} \right)^{n-2} \right] = \frac{s}{r^{n-2}} \left[r^{n-2} - s^{n-2} \right] \geq (n-2) \left(\frac{1}{2} \right)^{n-2} (r-s).
$$

From (2.4), (2.5) and (2.7), we obtain

$$
\bar{u}(r) \geq C_1 \log R + \frac{C_2}{R^2} \int_R^r (r-s) \bar{u}^\sigma(s) \, ds
$$

for $R > R_1$ and $R \leq r \leq 2R$, where $C_2 > 0$ is a constant. Let

$$
g(r) = C_1 \log R + \frac{C_2}{R^2} \int_R^r (r-s) \bar{u}^\sigma(s) \, ds.
$$

Then

$$
g(R) = C_1 \log R, \quad g'(R) = 0,
$$

$$
g'(r) = \frac{C_2}{R^2} \int_R^r \bar{u}^\sigma(s) \, ds \geq 0,
$$

and

$$
g''(r) = \frac{C_2}{R^2} \bar{u}^\sigma(r) \geq \frac{C_2}{R^2} (g(r))^\sigma.
$$
From (2.10) and (2.11), we have

\[2g''(r)g'(r) \geq \frac{2C_2}{R^2} \left(g(r) \right)^\sigma g'(r), \]

or

\[\frac{d}{dr} \left([g'(r)]^2 \right) \geq \frac{2C_2}{R^2} \frac{1}{\sigma + 1} g^{\sigma+1}(r). \]

Hence

\[(2.12) \quad [g'(r)]^2 \geq \left(\frac{2C_2}{(\sigma + 1)R^2} \right) \left[g^{\sigma+1}(r) - g^{\sigma+1}(R) \right]. \]

Let \(\beta = C_1 \log R = g(R) \) and \(\delta = C_2/R^2 \). Then we have

\[[g'(r)]^2 \geq \frac{2\delta}{\sigma + 1} \left[g^{\sigma+1}(r) - \beta^{\sigma+1} \right]. \]

Thus

\[(2.13) \quad \int_\beta^g \frac{dg}{\sqrt{g^{\sigma+1} - \beta^{\sigma+1}}} \geq \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \int_R^s ds. \]

Let \(g(r) = \beta z \), we have

\[(2.14) \quad \int_1^z \frac{dz'}{\sqrt{(z')^{\sigma+1} - 1}} \geq \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \beta^{(\sigma-1)/2} (r - R). \]

Now if we choose \(R \) so large that

\[(2.15) \quad \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \beta^{(\sigma-1)/2} \cdot R = \left(\frac{2C_2}{(\sigma + 1)R^2} \right)^{1/2} \left(C_1 \log R \right)^{(\sigma-1)/2} \cdot R \]

\[= \left(\frac{2C_2}{\sigma + 1} \right)^{1/2} \left(C_1 \log R \right)^{(\sigma-1)/2} \]

\[> \int_1^\infty \frac{dz}{\sqrt{z^{\sigma+1} - 1}}. \]

Then there is a \(R_c \leq 2R \), such that

\[(2.16) \quad \lim_{r \to R_c} g(r) = \infty. \]

But \(u(R_c) \geq g(R_c) = \infty \). This is a contradiction. This completes the proof of this theorem.

Now we can state our main nonexistence results.

Theorem 2.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function. If \(K(r) \) satisfies

1. there exist \(\alpha > 0 \), \(R_0 > 0 \) and \(C > 0 \), such that

\[K(r) \geq C/r^\alpha \quad \text{for} \ r \geq R_0, \]
ELLiptic equatIons $\Delta u = K(x)u^p$ and $\Delta u = K(x)e^{2u}$

(2) there exist $\varepsilon > 0$ and $P > 2$, such that

$$\int_0^{(P-1)R} r\overline{K}(r) \, dr \geq \varepsilon \quad \text{for } R \geq R_0,$$

then equation (1.1) does not possess any positive solution in \mathbb{R}^n.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^n. Then as in the proof of Theorem 2.1, we have

$$\overline{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s\overline{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \overline{u}(s) \, ds.$$ \hfill (2.17)

From assumption (2), we have

$$\int_0^\infty s\overline{K}(s) \, ds = \infty.$$ \hfill (2.18)

Hence

$$\overline{u}(r) \geq \alpha + C \int_0^{r/2} \alpha^s s\overline{K}(s) \, ds$$

and

$$\lim_{r \to \infty} \overline{u}(r) = \infty.$$ \hfill (2.19)

Thus we can choose R_0 so large that

$$\overline{u}(R_0) \geq 1.$$ \hfill (2.20)

Now let $R \geq R_0$. From assumption (2), we have

$$\overline{u}(PR) \geq \overline{u}(R) + \frac{1}{n-2} \int_R^{PR} s\overline{K}(s) \left[1 - \left(\frac{s}{PR} \right)^{n-2} \right] \overline{u}(s) \, ds$$

$$\geq \overline{u}(R) + \frac{1}{n-2} \cdot \overline{u}(R) \cdot \left[1 - \left(\frac{P-1}{P} \right)^{n-2} \right] \cdot \int_R^{(P-1)R} s\overline{K}(s) \, ds$$

$$\geq \overline{u}(R) + C_1 \overline{u}(R),$$

where $1 > C_1 > 0$ and C_1 is a constant.

From (2.20), (2.21) and the fact that $\sigma > 1$, we have

$$\overline{u}(P^mR) \geq (1 + C_1)^m$$

for all $R \geq R_0$ and $m \geq 1$.

Choose $\alpha_1 > 0$ so small that

$$\log(1 + C_1) \geq \alpha_1 [\log P + \log(PR_0)].$$ \hfill (2.23)

Then

$$m \log(1 + C_1) \geq \alpha_1 [m \log P + \log(PR_0)].$$ \hfill (2.24)

Hence $(1 + C_1)^m \geq (P^mR)^{\alpha_1}$ for all $m \geq 1$ and $PR_0 \geq R \geq R_0$. This means that

$$\overline{u}(P^mR) \geq (P^mR)^{\alpha_1}$$

for all $m \geq 1$ and $PR_0 \geq R \geq R_0$. Hence

$$\overline{u}(r) \geq r^{\alpha_1}$$

for $r \geq R_0$.

Now we return to (2.21). We have for $R \geq R_0$

$$\overline{u}(P^mR) \geq C_1 \overline{u}^\sigma(P^{m-1}R) \geq C_1^{1+\sigma+\cdots+\sigma^{m-1}} \cdot \overline{u}^{\sigma m}(R)$$

$$= C_1^{(\sigma^{m-1})/(\sigma-1)} \cdot \overline{u}^{\sigma m}(R), \quad m \geq 1.$$
Hence
\[(2.27)\quad \log(\bar{u}(P^mR)) \geqslant \sigma^m \left[\log \bar{u}(R) + \frac{1 - 1/\sigma^m}{\sigma - 1} \log C_1 \right] \geqslant \sigma^m \left[\alpha_1 \log R - \frac{1}{\sigma - 1} |\log C_1| \right].\]

Choose $C_2 > 0$ and R_1 sufficiently large, such that
\[(2.28)\quad \alpha_1 \log R_1 \geqslant \frac{1}{\sigma - 1} |\log C_1| + C_2.\]

Then
\[(2.29)\quad \log(\bar{u}(P^mR)) \geqslant C_2 \sigma^m\]
for $R \geqslant R_1$ and $m \geqslant 1$.

Now we can choose α_2 sufficiently small, such that
\[
\log \sigma \geqslant \alpha_2 \left(\log P + \log PR_1 \right).
\]

Then
\[
\begin{align*}
m \log \sigma & \geqslant \alpha_2 \left(m \log P + \log PR_1 \right), \quad m \geqslant 1. \\
\end{align*}
\]
Hence $\sigma^m \geqslant (P^mR)^{\alpha_2}$ for $m \geqslant 1$ and $PR_1 \geqslant R \geqslant R_1$. Hence from (2.29), we have
\[
\bar{u}(P^mR) \geqslant \exp \left[C_2 (P^mR)^{\alpha_2} \right]
\]
for $m \geqslant 1$ and $PR_1 \geqslant R \geqslant R_1$. That is,
\[(2.30)\quad \bar{u}(r) \geqslant \exp \left[C_2 r^{\alpha_2} \right]\]
for $r \geqslant R_1$. Hence from (2.17), for $r \geqslant R_1$, we have
\[
\bar{u}(r) \geqslant \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_1}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}(s) \, ds
\]
\[
= \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_1}^r s \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \left[\bar{K}(s) \cdot \bar{u}^{(\sigma-1)/2}(s) \right] \bar{u}^{(\sigma+1)/2}(s) \, ds.
\]
Now from (2.30) and the assumption (1), we can choose $R_2 \geqslant R_1$ so large that
\[
\bar{K}(s) \bar{u}^{(\sigma-1)/2}(s) \geqslant C_3/s^2
\]
for $s \geqslant R_2$ for some constant $C_3 > 0$. Hence we have
\[(2.31)\quad \bar{u}(r) \geqslant \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_2}^r s \left[\bar{K}(s) \cdot \bar{u}^{(\sigma-1)/2}(s) \right] \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^{(\sigma+1)/2}(s) \, ds.
\]
But from the proof of Theorem 2.1, this is impossible. Hence we complete the proof of this theorem.

Theorem 2.3. Let $K(x) \geqslant 0$ be a locally Hölder continuous function. If $\bar{K}(r)$ satisfies
1. $\int_0^s \bar{K}(s) \, ds$ is strictly increasing in $[0, \infty)$ and $\int_0^\infty \bar{K}(s) \, ds = \infty$,
2. $(s/r)^m \leqslant \int_0^{t\bar{K}(t)} dt / \int_0^{t\bar{K}(t)} dt$ for some finite $m > 0$ and for all $r \geqslant s \geqslant R_0 > 0$,
then equation (1.1) does not possess any positive solution in \mathbb{R}^n.

In particular, if $\overline{K}(r)$ satisfies (1) and $0 \leq \overline{K}(r) \leq C/r^2$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\overline{K}(r)$ also satisfies (2) and hence (1.1) does not possess any positive solution in \mathbb{R}^n.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^n. Then as in the proof of Theorem 2.2, we have (2.17). Let

$$f(r) = \int_0^r sK(s) \, ds = \eta.$$

Then $f: [0, \infty) \to [0, \infty)$ is one-one and onto. Hence f^{-1} exists and let it be denoted by g. Let

$$t = f(s), \quad \eta = f(r), \quad \tilde{u}(g(\eta)) = v(\eta).$$

Then from (2.17), we have

$$v(\eta) \geq \alpha + \frac{1}{n-2} \int_0^\eta \left[1 - \left(\frac{g(t)}{g(\eta)} \right)^{(n-2)/m} \right] v^a(t) \, dt.$$

From the assumption (2), we have

$$g(t)/g(\eta) \leq (t/\eta)^{1/m} \text{ for all } \eta \geq t \geq f(R_0).$$

Hence from (2.32) and (2.33), we have

$$v(\eta) \geq \tilde{u}(R_0) + \frac{1}{n-2} \int_{f(R_0)}^\eta \left[1 - \left(\frac{t}{\eta} \right)^{(n-2)/m} \right] v^a(t) \, dt.$$

But from Theorem 2.1, this is impossible. Hence (1.1) does not possess any positive solution.

If in addition to condition (1), $\overline{K}(r)$ also satisfies $0 \leq \overline{K}(r) \leq C/r^2$ for $r \geq R_1$. Then we have

$$\frac{d}{dr} \left(\frac{\int_0^r t\overline{K}(t) \, dt}{r} \right) = \frac{r^2\overline{K}(r) - \int_0^r t\overline{K}(t) \, dt}{r^2} \leq \frac{C - \int_0^r t\overline{K}(t) \, dt}{r^2}.$$

for $r \geq R_1$. Thus we can choose $R_2 \geq R_1$ so large that

$$C - \int_0^r t\overline{K}(t) \, dt \leq 0 \text{ for } r \geq R_2.$$

Hence $\int_0^r t\overline{K}(t) \, dt/r$ is monotonically decreasing for $r \geq R_2$. Thus $\overline{K}(r)$ satisfies condition (2) for $r \geq s \geq R_2$.

This completes the proof of this theorem.

Theorem 2.4. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^n and $\overline{K}(t)$ be a locally Hölder continuous function in $[0, \infty)$.

Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy:

$$\overline{K}(r) \geq \overline{K}(r - \beta_i) \text{ if } \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_i,$$

$$\overline{K}(r) \geq 0 \text{ if } \alpha_{i+1} + \beta_i < r < \alpha_{i+1} + \beta_{i+1}.$$
for \(i = 0, 1, 2, \ldots \), where \(\{ a_i \}_{i=0}^{\infty} \) is a strictly increasing sequence satisfying \(a_0 = 0 \) and \(\lim_{n \to \infty} a_n = \infty \) and \(\{ \beta_i \}_{i=0}^{\infty} \) is a nondecreasing sequence satisfying \(\beta_0 = 0 \) and \(\beta_i / a_i \leq M \) for some constant \(M > 0 \) and \(i = 1, 2, \ldots \). If

\[
\begin{aligned}
\left\{ \begin{array}{ll}
u''(r) + \frac{n-1}{r} u'(r) = \bar{K}(r) u^\alpha(r) & \text{in } (0, \infty), \\
u(0) = \alpha > 0, & u'(0) = 0
\end{array} \right.
\end{aligned}
\]

(2.35)

does not possess any solution in \([0, \infty)\) for all \(\alpha > 0 \), then (1.1) does not possess any positive solution in \(\mathbb{R}^n \).

Proof. Assume that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^n \). Then as in the proof of Theorem 2.2, we have

\[
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds.
\]

(2.36)

Now we define the function \(v \) by

\[
v(r) = \bar{u}(r + \beta_i) \quad \text{if } \alpha_i < r < \alpha_{i+1}
\]

for \(i = 0, 1, 2, \ldots \). We shall prove that

\[
v(r) \geq \alpha + \frac{A}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] v^\alpha(s) \, ds,
\]

(2.38)

where \(A \) is a positive constant depending only on the constant \(M \). To prove (2.38), let \(\alpha_i \leq r \leq \alpha_{i+1} \). Then from (2.36), we have

\[
\bar{u}(r + \beta_i) \geq \alpha + \frac{1}{n-2} \int_{0}^{r+\beta_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds
\]

\[
\geq \alpha + \frac{1}{n-2} \int_{0}^{\alpha_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds
\]

\[
+ \frac{1}{n-2} \int_{\alpha_i}^{\alpha_{i+1}} s \bar{K}(s) \left[1 - \left(\frac{s}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds
\]

\[+ \cdots
\]

\[
+ \frac{1}{n-2} \int_{r+\beta_i}^{r} s \bar{K}(s) \left[1 - \left(\frac{s}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds
\]

\[= \alpha + \frac{1}{n-2} \int_{0}^{\alpha_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s) \, ds
\]

\[+ \frac{1}{n-2} \int_{\alpha_i}^{\alpha_{i+1}} (s + \beta_i) \bar{K}(s + \beta_i) \left[1 - \left(\frac{s + \beta_i}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s + \beta_i) \, ds
\]

\[+ \cdots
\]

\[+ \frac{1}{n-2} \int_{r+\beta_i}^{r} (s + \beta_i) \bar{K}(s + \beta_i) \left[1 - \left(\frac{s + \beta_i}{r + \beta_i} \right)^{n-2} \right] \bar{u}^\alpha(s + \beta_i) \, ds.
\]
But for \(1 \leq j \leq i, \)
\[
1 - \left(\frac{s + \beta_j}{r + \beta_i} \right)^{n-2} \geq 1 - \left(\frac{s + \beta_i}{r + \beta_i} \right)^{n-2} = \frac{(1 + \beta_i/r)^{n-2} - (s/r + \beta_i/r)^{n-2}}{(1 + \beta_i/r)^{n-2}} \geq \frac{1 - (s/r)^{n-2}}{(1 + \beta_i/\alpha_i)^{n-2}} \geq A \left[1 - (s/r)^{n-2} \right].
\]
Hence we have
\[
\bar{u}(r + \beta_i) \geq \alpha + \frac{A}{n-2} \int_0^{\alpha_1} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s) \, ds \\
+ \frac{A}{n-2} \int_{\alpha_1}^{\alpha_2} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s + \beta_i) \, ds \\
+ \ldots \\
+ \frac{A}{n-2} \int_{\alpha_i}^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s + \beta_i) \, ds.
\]
Hence (2.38) is true for all \(r \in [0, \infty) \). Let \(\bar{v} = A^{1/(\sigma - 1)} \bar{v} \) and \(\bar{\alpha} = A^{1/(\sigma - 1)} \alpha \). Then (2.38) becomes
\[
\bar{v}(r) \geq \bar{\alpha} + \frac{1}{n-2} \int_0^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{v}^\sigma(s) \, ds.
\]
Now let \(X \) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology and consider the set
\[
Y = \{ y \in X : \bar{\alpha} \leq y(r) \leq \bar{v}(r) \text{ for } r \geq 0 \},
\]
where \(\bar{v} \) is defined above. Clearly, \(Y \) is a closed convex subset of \(X \). Define the mapping \(T \) by
\[
(2.39) \quad Ty(r) = \bar{\alpha} + \frac{1}{n-2} \int_0^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] y^\sigma(s) \, ds.
\]
If \(y \in Y \), then \(\bar{\alpha} \leq y(r) \leq \bar{v}(r) \). Hence we have
\[
Ty(r) = \bar{\alpha} + \frac{1}{n-2} \int_0^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] y^\sigma(s) \, ds \geq \bar{\alpha}
\]
and
\[
Ty(r) \leq \bar{\alpha} + \frac{1}{n-2} \int_0^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{v}^\sigma(s) \, ds \leq \bar{v}(r).
\]
Thus \(T \) maps \(Y \) into itself. Let \(\{ y_m \}_{m=1}^{\infty} \subset Y \) be a sequence which converges to \(y \) in \(X \). Then \(\{ y_m \} \) converges uniformly to \(y \) on any compact interval of \([0, \infty)\). Since
\[
(2.40) \quad |Ty_m(r) - Ty(r)| \leq \frac{1}{n-2} \int_0^{r} s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] |y_m^\sigma(s) - y^\sigma(s)| \, ds,
\]
we have \(\{ Ty_m \} \) converges uniformly to \(Ty \) on any compact interval of \([0, \infty)\). Hence \(T \) is a continuous mapping from \(Y \) into \(Y \). On the other hand, we have
\[
(2.41) \quad (Ty)'(r) = \int_0^{r} \left(\frac{s}{r} \right)^{n-1} \tilde{K}(s) y^\sigma(s) \, ds.
\]
Hence for any fixed \(R > 0 \), \(TY \) is a uniformly bounded and equicontinuous family of functions defined on \([0, R]\). Hence \(TY \) is relatively compact. Thus we can use the Schauder-Tychonoff fixed point theorem (see Edwards [2, p. 161]) to conclude that \(T \) has a fixed point \(y \in Y \). This fixed point \(y \) satisfies the integral equation
\[
y(r) = \tilde{\alpha} + \frac{1}{n-2} \int_0^r s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] y^a(s) \, ds.
\]
Hence (2.35) has a solution for this \(\tilde{\alpha} \). This is a contradiction. The theorem is proved. Q.E.D.

3. The case \(n = 2 \). In this case, we consider only the situation \(K(x) \geq 0 \) in (1.1). Kawano, Kusano and Naito [3] obtain the following existence result: Let \(K(x) \geq 0 \) be a locally Hölder continuous function which is positive in some neighborhood of the origin. If
\[
K(x) \leq \tilde{K}(|x|) \quad \text{for all } x \in \mathbb{R}^2
\]
and
\[
\int_1^\infty s (\log s)^a \tilde{K}(s) \, ds < \infty.
\]
Then equation (1.1) has infinitely many positive solutions in \(\mathbb{R}^2 \) with logarithmic growth at infinity.

To our knowledge, there seems no known nonexistence result. Our nonexistence results are

Theorem 3.1. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \). Let the average \(\bar{K}(r) \) of \(K(x) \) in the sense of (2.2) satisfy
\[
\bar{K}(r) \geq C/r^2 (\log r)^{a+1} \quad \text{for } r \geq R_0.
\]
Then equation (1.1) does not possess any positive solution in \(\mathbb{R}^2 \).

Proof. Assume that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^2 \). Then we have
\[
\begin{align*}
\bar{u}''(r) + \frac{\bar{u}'(r)}{r} &\geq \bar{K}(r) \bar{u}^a(r), \\
\bar{u}(0) &= \alpha > 0, \quad \bar{u}'(0) = 0,
\end{align*}
\]
where \(\bar{u} \) and \(\bar{K} \) are defined in (2.1) and (2.2). From (3.2), \(\bar{u}(r) \) satisfies the integral equation
\[
\bar{u}(r) \geq \alpha + \int_0^r s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^a(s) \, ds.
\]
Without loss of generality, we assume that \(K(0) > 0 \) and hence \(\bar{K}(0) > 0 \). Thus we have from (3.3)
\[
\begin{align*}
\bar{u}(r) &\geq \alpha + \int_0^1 s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^a(s) \, ds + \int_1^r s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^a(s) \, ds \\
&\geq \alpha + \int_0^1 s \log r \bar{K}(s) \bar{u}^a(s) \, ds \\
&\geq \alpha + \alpha^a \cdot \log r \cdot \int_0^1 s \bar{K}(s) \, ds \\
&\geq \alpha + C_1 \log r
\end{align*}
\]
for \(r \geq 1 \) and a constant \(C_1 > 0 \).
Now consider \(r \geq e \). We have
\[
\bar{u}(r) \geq \alpha + \int_0^1 s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^\sigma(s) \, ds \\
+ \int_e^r s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^\sigma(s) \, ds \\
\geq C_1 \log r + \int_e^r s \log \left(\frac{r}{s} \right) \bar{K}(s) \bar{u}^\sigma(s) \, ds.
\]
Let \(v(r) = \bar{u}(r)/\log r \) for \(r \geq e \). Then from (3.5), we have
\[
v(r) \geq C_1 + \int_e^r s \left(1 - \frac{\log s}{\log r} \right) \bar{K}(s) (\log s)^\alpha v^\sigma(s) \, ds.
\]
Let \(t = \log s \), \(\eta = \log r \) and \(v(e^n) = v(r) = \bar{v}(\eta) \). Then (3.6) becomes
\[
\bar{v}(\eta) \geq C_1 + \int_1^n t \left(1 - \frac{t}{\eta} \right) e^{2t} \bar{K}(e^t) e^{(\alpha - 1) \bar{v}^\sigma(t)} \, dt.
\]
Let \(\bar{K}(t) = e^{2t} \bar{K}(e^t) t^{\alpha - 1} \). Then from (3.1), we have
\[
\bar{K}(t) \geq C/t^2 \quad \text{for } t \geq \exp(R_0)
\]
and
\[
\bar{v}(\eta) \geq C_1 + \int_1^n t \left(1 - \frac{t}{\eta} \right) \bar{K}(t) \bar{v}^\sigma(t) \, dt.
\]
Using a similar argument as in the proof of Theorem 2.1, we obtain a contradiction.
This completes the proof of this theorem. Q.E.D.

Theorem 3.2. Let \(K(x) > 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \). Let the average \(\bar{K}(r) \) of \(K(x) \) in the sense of (2.2) satisfy
\[
\text{There exist } e > 0, P > 2 \text{ and } R_0 > 0, \text{ such that } \\
\int_e^{e^{(P-1)R}} s \bar{K}(s) (\log s)^\alpha \, ds \geq e \text{ for all } R \geq R_0.
\]
\[
\text{There exist } \alpha > 0, R_1 > 0 \text{ and } C > 0, \text{ such that } \\
\bar{K}(s) \geq C/s^2 (\log s)^{(\alpha + \alpha)} \text{ for all } s \geq R_1.
\]
Then equation (1.1) does not possess any positive solution in \(\mathbb{R}^2 \).

Proof. Assume that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^2 \). As in the proof of Theorem 3.1, we have (3.3)-(3.7). Hence
\[
\bar{v}(\eta) \geq C_1 + \int_1^n t \left(1 - \frac{t}{\eta} \right) \bar{K}(t) \bar{v}^\sigma(t) \, dt.
\]
But from (3.9) and (3.10), \(\bar{K}(t) \) satisfies
\[
\int_R^{(P-1)R} t \bar{K}(t) \, dt \geq e \text{ for all } R \geq R_0,
\]
\[
\bar{K}(s) \geq C/t^{(1+\alpha)} \text{ for all } t \geq \log R_1.
\]
Using a similar argument as in the proof of Theorem 2.2, we obtain a contradiction.
This completes the proof. Q.E.D.
Theorem 3.3. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy

\begin{equation}
\int_{0}^{\infty} s\overline{K}(s)(\log s)^{\gamma} \, ds \text{ is strictly increasing on } [0, \infty) \text{ and}
\end{equation}

\begin{equation}
\int_{0}^{\infty} s\overline{K}(s)(\log s)^{\gamma} \, ds = \infty,
\end{equation}

\begin{equation}
\left(\frac{\log s}{\log r} \right)^{m} \leq \int_{0}^{s} t\overline{K}(t)(\log t)^{\gamma} \, dt / \int_{0}^{r} t\overline{K}(t)(\log t)^{\gamma} \, dt
\end{equation}

for some $m > 0$ and for all $r \geq s \geq R_0 > 0$. Then equation (1.1) does not possess any positive solution in \mathbb{R}^2. In particular, if $\overline{K}(r)$ satisfies (3.14) and $0 \leq \overline{K}(r) \leq C/r^2(\log r)^{\gamma+1}$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\overline{K}(r)$ also satisfies (3.15) and hence (1.1) does not possess any positive solution in \mathbb{R}^2.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^2. As in the proof of Theorem 3.1, we have (3.3)–(3.7). Hence we obtain (3.8) or (3.11). But now $\overline{K}(t)$ satisfies

\begin{equation}
\int_{1}^{\infty} t\overline{K}(t) \, dt \text{ is strictly increasing in } [1, \infty) \text{ and}
\end{equation}

\begin{equation}
\int_{1}^{\infty} t\overline{K}(t) \, dt = \infty,
\end{equation}

\begin{equation}
\left(\frac{s}{\eta} \right)^{m} \leq \int_{1}^{s} t\overline{K}(t) \, dt / \int_{1}^{\eta} t\overline{K}(t) \, dt
\end{equation}

for some $m > 0$ and for all $\eta \geq s \geq \log R_0$. Using a similar argument as in the proof of Theorem 2.3, we obtain a contradiction. This completes the proof. Q.E.D.

Theorem 3.4. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2 and $\overline{K}(t)$ be a locally Hölder continuous function in $[0, \infty)$. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy

\begin{equation}
\overline{K}(r) \geq 0 \quad \text{if } \alpha_i + 1 + \beta_i < r < \alpha_{i+1} + 1 + \beta_{i+1},
\end{equation}

\begin{equation}
\overline{K}(r) \geq \overline{K}(r - \beta_i) \quad \text{if } \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_i,
\end{equation}

for $i = 0, 1, 2, \ldots$, where $\{\alpha_i\}_{i=0}^{\infty}$ is a strictly increasing sequence satisfying $\alpha_0 = 0$ and $\lim_{n \to \infty} \alpha_n = \infty$ and $\{\beta_i\}_{i=0}^{\infty}$ is a nondecreasing sequence satisfying $\beta_0 = 0$ and $\beta_i/\alpha_i \leq M$ for some $M > 0$ for all $i \geq 1$. If

\begin{equation}
\begin{cases}
u''(r) + u'(r)/r = \overline{K}(r)u^\alpha(r) & \text{in } (0, \infty), \\
u(0) = \alpha > 0, \quad \nu'(0) = 0
\end{cases}
\end{equation}

does not possess any solution in $[0, \infty)$ for all $\alpha > 0$, then (1.1) does not possess any positive solution in \mathbb{R}^2.

Proof. The proof is very similar to that of Theorem 2.4. Hence we only sketch the proof. Assume that (1.1) has a positive solution in \mathbb{R}^2. Then we have

\begin{equation}
\bar{u}(r) \geq \alpha + \int_{0}^{r} s\log \left(\frac{r}{s} \right) \overline{K}(s) \bar{u}^\alpha(s) \, ds.
\end{equation}
Let
\[v(r) = \bar{u}(r + \beta_i) \quad \text{if } \alpha_i \leq r < \alpha_{i+1} \]
for \(i = 0, 1, 2, \ldots \). Then
\[(3.19) \quad v(r) \geq \alpha + A \cdot \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}(s) v^\sigma(s) \, ds. \]

Let \(X \) denote the locally convex space of all continuous function on \([0, \infty)\) with the usual topology and consider the set
\[Y = \{ y \in X : \tilde{\alpha} < y(r) < \bar{v}(r) \text{ for } r \geq 0 \}. \]

Define the mapping \(T \) by
\[(3.20) \quad (Ty)(r) = \tilde{\alpha} + \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}(s) y^\sigma(s) \, ds. \]

We can prove that \(TY \subset Y \) and \(T \) is continuous. Furthermore \(TY \) is relatively compact. Hence \(T \) has a fixed point in \(Y \). Thus \((3.17) \) has a solution for this given \(\tilde{\alpha} > 0 \). This is a contradiction. The proof is complete. Q.E.D.

4. The case \(n = 1 \). In this case, we also consider only the situation \(K(x) \geq 0 \) in (1.1). We give a main existence result which have an extension to the higher-dimensional case. We also give some nonexistence results which may have applications.

THEOREM 4.1. Let \(K(x) \geq 0 \) be a Hölder continuous (actually only continuous is sufficient) function in \(\mathbb{R} \). If \(K(0) > 0 \)
\[\int_{-\infty}^{\infty} |x|^\sigma K(x) \, dx < \infty, \]
then (1.1) has infinitely many positive solutions in \(\mathbb{R} \) with linear growth at \(|x| = \infty \).

PROOF. We shall seek solutions \(u \) such that \(u(0) = \alpha > 0 \) and \(u'(0) = 0 \). Consider now \(x > 0 \). Then equation (1.1) with \(u(0) = \alpha > 0 \) and \(u'(0) = 0 \) is equivalent to the integral equation
\[(4.2) \quad u(x) = \alpha + \int_0^x (x - t) K(t) u^\sigma(t) \, dt, \quad x > 0. \]

Now choose \(\alpha \) so small that
\[(4.3) \quad 2^\sigma \alpha^{(\sigma-1)} \int_0^1 K(t) \, dt \leq \frac{1}{2}, \]
\[(4.4) \quad 2^\sigma \alpha^{(\sigma-1)} \int_1^\infty K(t) t^\sigma \, dt \leq \frac{1}{2}. \]

Let
\[A(x) = \begin{cases} 2\alpha & \text{if } 0 \leq x \leq 1, \\ 2\alpha x & \text{if } 1 \leq x. \end{cases} \]

As in the proofs of Theorems 2.4 and 3.4, we let \(X \) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology and consider the set
\[Y = \{ y \in X : \alpha \leq y(x) \leq A(x) \text{ for } x \geq 0 \}. \]
Clearly, Y is a closed convex subset of X. Let the mapping T be defined by

$$ (Ty)(x) = \alpha + \int_0^x (x - t)K(t)y^\sigma(t)\,dt, \quad x \geq 0. \quad (4.5) $$

If $y \in Y$, then $\alpha \leq y(x) \leq A(x)$. Hence we have

$$ (Ty)(x) = \alpha + \int_0^x (x - t)K(t)y^\sigma(t)\,dt \geq \alpha + \int_0^x (x - t)K(t)\alpha^\sigma\,dt \geq \alpha. \quad (4.6) $$

On the other hand, for $0 \leq x \leq 1$, we have

$$ (Ty)(x) = \alpha + \int_0^x (x - t)K(t)y^\sigma(t)\,dt \leq \alpha + \int_0^1 K(t)(2\alpha)^\sigma\,dt = \alpha \left[1 + 2\alpha(\sigma - 1)\int_0^1 K(t)\,dt\right] \leq \alpha \left[1 + \frac{1}{2}\right] \leq 2\alpha = A(x). \quad (4.7) $$

For $1 \leq x$, we have

$$ (Ty)(x) = \alpha + \int_0^1 (x - t)K(t)y^\sigma(t)\,dt + \int_1^x (x - t)K(t)y^\sigma(t)\,dt \leq \alpha + x\int_0^1 K(t)(2\alpha)^\sigma\,dt + x\int_1^\infty K(t)(2\alpha t)^\sigma\,dt \leq ax + ax \left[2\alpha(\sigma - 1)\int_0^1 K(t)\,dt\right] + ax \left[2\alpha(\sigma - 1)\int_1^\infty K(t)t^\sigma\,dt\right] \leq ax \left[1 + \frac{1}{2} + \frac{1}{2}\right] \leq 2ax = A(x). \quad (4.8) $$

Thus T maps Y into itself. Now let $\{y_m\}_m=1^\infty \subset Y$ be a sequence which converges to y in X. Then $\{y_m\}$ converges uniformly to y on any compact interval of $[0, \infty)$. But

$$ |Ty_m(x) - Ty(x)| \leq \int_0^x |(x - t)K(t)|y_m^\sigma(t) - y^\sigma(t)|\,dt, \quad (4.9) $$

we conclude that $\{Ty_m\}$ converges uniformly to Ty on any compact interval of $[0, \infty)$. Hence T is a continuous mapping from Y into Y. As in the proof of Theorem 2.4, the precompactness of T can be verified by

$$ \left|(Ty)'(x)\right| \leq \int_0^x K(t)y^\sigma(t)\,dt \leq \int_0^\infty K(t)(2\alpha)^\sigma t^\sigma\,dt < \infty. \quad (4.10) $$

Thus T has a fixed point $y \in Y$. This fixed point y is a solution of equation (1.1) for $x \geq 0$ with $y(0) = \alpha$ and $y'(0) = 0$.

Similarly, we can find a solution of equation (1.1) for $x \leq 0$ with $y(0) = \alpha$ and $y'(0) = 0$ if α is sufficiently small. Now let $y(x)$ be the solution of (1.1) in \mathbb{R} with
\[y(0) = \alpha, \ y'(0) = 0. \] Then

\[2\alpha x \geq y(x) = \alpha + \int_0^x (x-t)K(y)y'(t)\,dt \]
\[\geq \alpha + \int_0^1 (x-1)K(t)\alpha\,dt \]
\[\geq \alpha + k_1(x-1) \geq k_2 x \]

for \(x \) large. Hence \(y \) grows linearly at \(|x| = \infty \). Now we can choose a smaller \(y(0) \), such as \(y(0) = \alpha/2 \) to obtain another solution. This completes the proof of this theorem. Q.E.D.

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] and Kawano, Kusano and Naito [3].

Theorem 4.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1} \). Let \(\phi^*(x) \) and \(\phi^*(x) \) be two locally Hölder continuous function in \(\mathbb{R} \). If

\[0 \leq \phi^*(x) \leq K(x) \leq \phi^*(x) \quad \text{for all} \quad x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{n-1}, \]
\[\int_{-\infty}^{\infty} |x_1|^n \phi^*(x) \, dx_1 < \infty, \]

then equation (1.1) has infinitely many positive solutions in \(\mathbb{R}^n \) which are unbounded.

Proof. Consider the equations

\[d^2v/dx_1^2 = \phi^*(x) v, \]
\[d^2w/dx_1^2 = \phi^*(x) w. \]

From the proof of Theorem 4.1 we see that (4.14) and (4.15) have unbounded solutions (linear growth at \(\infty \)) \(\hat{v} \) and \(\hat{w} \). We can choose \(\hat{v} \) and \(\hat{w} \) such that \(\hat{v}(x_1) \leq \hat{w}(x_1) \) for all \(x_1 \in \mathbb{R} \). Now let

\[v(x_1, x') = \hat{v}(x_1) \quad \text{and} \quad w(x_1, x') = \hat{w}(x_1). \]

Then from (4.12), we have

\[\Delta v - K(x) v = \frac{d^2\hat{v}(x_1)}{dx_1^2} - K(x) \hat{v}(x_1) = 0, \]
\[\Delta w - K(x) w = \frac{d^2\hat{w}(x_1)}{dx_1^2} - K(x) \hat{w}(x_1) = 0. \]

in \(\mathbb{R}^n \). Hence \(v(x_1, x') \) and \(w(x_1, x') \) are, respectively, a subsolution and a supersolution of (1.1) in \(\mathbb{R}^n \). Since \(v(x_1, x') \leq w(x_1, x') \) in \(\mathbb{R}^n \), from Theorem 2.10 of Ni [13], it follows that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^n \) such that \(\hat{v}(x_1) \leq u(x_1, x') \leq \hat{w}(x_1) \). It is easy to see that \(k_1|x_1| \leq u(x_1, x') \leq k_2|x_1| \) for \(|x_1| \) large for some positive constants \(k_1 \) and \(k_2 \). This completes the proof of the theorem. Q.E.D.
Now let \(u \) be a positive function in \(\mathbb{R} \) and \(K(x) \geq 0 \) in \(\mathbb{R} \). Define for \(r > 0 \)
\[
\overline{u}(r) = \left(u(r) + u(-r) \right)/2, \\
\overline{K}(r) = \left[\frac{1}{2} \left(K(r)^{-\sigma/a} + K(-r)^{-\sigma/a} \right) \right]^{-a/\sigma}
\]
where \(1/\sigma + 1/\sigma' = 1 \). It is easy to see that
\[
\overline{u}(0) = u(0) \quad \text{and} \quad \overline{u}'(0) = 0
\]
if \(u \) is also continuously differentiable.

Theorem 4.3. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). If the average \(\overline{K}(r) \) of
\(K(x) \) in the sense (4.18) satisfies
\[
\overline{K}(r) > C/(r^{(\sigma+1)})
\]
for \(r > R_0 \) for some constant \(C > 0 \), then equation (1.1) does not possess any positive
solution in \(\mathbb{R} \).

Proof. Assume that \(u(x) \) is a positive solution of (1.1) in \(\mathbb{R} \). Then we have
\[
\overline{u}''(r) = \frac{u''(r) + u''(-r)}{2} = \frac{1}{2} \left[K(r)\overline{u}^a(r) + K(-r)\overline{u}^a(-r) \right].
\]
But
\[
\overline{u}(r) = \left[\frac{1}{2} \left(K(r)\overline{u}(r) + K(-r)\overline{u}(-r) \right) \right]^{1/\sigma} \\
\quad \cdot \left[\frac{1}{2} \left(K^{-\sigma/a}(r) + K^{-\sigma/a}(-r) \right) \right]^{1/\sigma'}
\]
Hence
\[
\frac{1}{2} \left(K(r)\overline{u}^a(r) + K(-r)\overline{u}^a(-r) \right) \geq \overline{K}(r)\overline{u}^a(r).
\]
Thus we have
\[
\begin{cases}
\overline{u}''(r) \geq \overline{K}(r)\overline{u}^a(r) & \text{for } r > 0, \\
\overline{u}(0) = \alpha > 0, & \overline{u}'(0) = 0.
\end{cases}
\]
Hence \(\overline{u} \) satisfies
\[
\overline{u}(r) \geq \alpha + \int_0^r (r-t)\overline{K}(t)\overline{u}^a(t) \, dt.
\]
Without loss of generality, we may assume that \(K(0) > 0 \) and hence \(\overline{K}(0) > 0 \). Thus
for \(r \geq 2 \), we have
\[
\begin{align*}
\overline{u}(r) & \geq \alpha + \int_0^1 (r-t)\overline{K}(t)\overline{u}^a(t) \, dt + \int_1^r (r-t)\overline{K}(t)\overline{u}^a(t) \, dt \\
& \geq \alpha + \left(\alpha^a \cdot \int_0^1 \left(1 - \frac{t}{r} \right)\overline{K}(t) \, dt \right) \cdot r + \int_1^r (r-t)\overline{K}(t)\overline{u}^a(t) \, dt \\
& \geq C_1 \cdot r + \int_1^r (r-t)\overline{K}(t)\overline{u}^a(t) \, dt,
\end{align*}
\]
where
\[C_1 = \alpha \cdot \int_0^1 \left(1 - \frac{1}{2}\right) \overline{K}(t) \, dt = \alpha \cdot \frac{1}{2} \cdot \int_0^1 \overline{K}(t) \, dt > 0. \]

Now let \(\bar{u}(r) = v(r) \cdot r \) for \(r \geq 2 \). We obtain
\[
(4.27) \quad v(r) \geq C_1 + \int_1^r t \left(1 - \frac{t}{r}\right) \overline{K}(t) \, dt.
\]
Letting \(\tilde{K}(t) = \overline{K}(t) t^{(\alpha-1)} \). Then from (4.20), we have
\[
(4.28) \quad \tilde{K}(t) \geq C \cdot t^{-2} \quad \text{for} \quad t \geq R_0
\]
and
\[
(4.29) \quad v(r) \geq C_1 + \int_1^r t \tilde{K}(t) \left(1 - \frac{t}{r}\right) v^\alpha(t) \, dt.
\]
From the proof of Theorem 2.1, we see that it is impossible to have a function \(v \) defined in \([2, \infty)\) satisfying (4.29). This completes the proof. Q.E.D.

Theorem 4.4. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). If the average \(\overline{K}(r) \) of \(K(r) \) in the sense (4.18) satisfies
\[
(4.30) \quad \text{there exist } \alpha > 0, R_0 > 0 \text{ and } C > 0 \text{ such that } \overline{K}(r) \geq C/r^{(\alpha+\alpha)} \quad \text{for } r \geq R_0,
\]
\[
(4.31) \quad \text{there exist } \epsilon > 0 \text{ and } P > 2 \text{ such that } \int_{R_0}^{(P-1)R} r^\alpha \overline{K}(r) \, dr \geq \epsilon \quad \text{for } R \geq R_0.
\]
Then equation (1.1) does not possess any positive solution in \(\mathbb{R} \).

Proof. Assume on the contrary that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R} \). Then as in the proof of Theorem 4.3, we have (4.24)–(4.27). But now \(\tilde{K}(r) = r^{(\alpha-1)} \overline{K}(r) \) satisfies
\[
(4.32) \quad \tilde{K}(r) \geq C/r^{(1+\alpha)} \quad \text{for } r \geq R_0,
\]
\[
(4.33) \quad \int_{R_0}^{(P-1)R} r \tilde{K}(r) \, dr \geq \epsilon \quad \text{for } R \geq R_0.
\]
But from the proof of Theorem 2.2, there is no positive function \(v \) satisfying (4.27). This contradiction proves the theorem. Q.E.D.

Theorem 4.5. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). Let the average \(\overline{K}(r) \) of \(K(x) \) in the sense (4.18) satisfy
\[
(4.34) \quad \int_0^s s^r \overline{K}(s) \, ds \text{ is strictly increasing in } [0, \infty) \text{ and }
\]
\[
(4.35) \quad \int_0^\infty s^r \overline{K}(s) \, ds = \infty,
\]
\[
(4.36) \quad \left(\frac{s}{r} \right)^m \leq \int_0^s t^r \overline{K}(t) \, dt \int_0^r t^s \overline{K}(t) \, dt \text{ for some } m > 0 \text{ and }
\]
\[
(4.37) \quad \text{for all } r \geq s \geq R_0 > 0.
\]
Then equation (1.1) does not possess any positive solution in \(\mathbb{R} \). In particular, if \(\bar{K}(r) \) satisfies (4.34) and \(0 \leq \bar{K}(r) \leq C/r^{(\sigma-1)} \) for \(r \geq R_1 \) for some constants \(C > 0 \) and \(R_1 > 0 \), then \(\bar{K}(r) \) also satisfies (4.35) and hence (1.1) does not possess any positive solution in \(\mathbb{R} \).

Proof. Assume on the contrary that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R} \). Then as in the proof of Theorem 4.3, we have (4.24)–(4.27). Now the function \(\tilde{K}(r) = r^{(\sigma-1)}\bar{K}(r) \) satisfies the assumptions of Theorem 2.3. Hence there is no positive function \(v \) satisfying (4.27). This contradiction proves the theorem. \(\Box \).

Theorem 4.6. Let \(K(x) > 0 \) be a continuous function in \(\mathbb{R} \) and \(k(r) \) be a continuous function in \([0, \infty) \). Let the average \(\bar{K}(r) \) of \(K(x) \) in the sense (4.18) satisfy

\[
\bar{K}(r) \geq 0 \quad \text{if} \quad \alpha_{i+1} + \beta_i < r < \alpha_{i+1} + \beta_{i+1}, \\
\bar{K}(r) \geq \bar{K}(r - \beta_i) \quad \text{if} \quad \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_i
\]

for \(i = 0, 1, 2, \ldots, \) where \(\{\alpha_i\}_{i=0}^{\infty} \) is a strictly increasing sequence satisfying \(\alpha_0 = 0 \) and \(\lim_{n \to \infty} \alpha_n = \infty \), and \(\{\beta_i\}_{i=0}^{\infty} \) is a nondecreasing sequence satisfying \(\beta_0 = 0 \) and \(\beta_i/\alpha_i \leq M \) for some \(M > 0 \) and for \(i \geq 1 \). \(\mu' = \bar{K}(r)u(t) \) in \((0, \infty) \),

\[
u(t) = v(r + \beta_i) \quad \text{if} \quad \alpha_i < r < \alpha_{i+1}
\]

for \(i = 0, 1, 2, \ldots, \) As in the proof of Theorem 2.4, we have

\[
u(r) \geq \alpha + \int_0^r (r - t)\bar{K}(t)v(t) \, dt.
\]

Now we can let \(X \) denote the locally convex space of all continuous functions on \([0, \infty) \) with the usual topology and consider the set

\[
Y = \{ y \in X: \alpha \leq y(r) \leq v(r) \text{ for } r \geq 0 \},
\]

where \(v \) is defined in (4.38). Clearly, \(Y \) is a closed convex subset of \(X \). We define the mapping \(T \) by

\[
(Ty)(r) = \alpha + \int_0^r (r - t)\bar{K}(t)y(t) \, dt.
\]

Then it is easy to verify that (i) \(TY \subset Y \), (ii) \(T \) is continuous and (iii) \(TY \) is precompact. Hence \(T \) has a fixed point in \(Y \). Thus (4.36) has a solution for this \(\alpha \). This contradiction completes the proof. \(\Box \).
PART II. \(\Delta u = K(x)e^{2u} \)

5. The case \(n \geq 3 \). In this case, the existence results are very similar to that of §2. Ni [14] proves that, if \(|K(x)| \leq C/|x|^{l} \) for \(|x| \) large and uniformly in \(x_{2} \) for some \(l > 2 \), then equation (1.2) possesses infinitely many bounded solutions in \(\mathbb{R}^{n} = \mathbb{R}^{m} \times \mathbb{R}^{n-m} \), where \(x = (x_{1}, x_{2}) \) and \(m \geq 3 \). Later on, Kusano and Oharu [7] extend the result to the case where \(|K(x)| \leq K(|x_{1}|) \) for all \(x \in \mathbb{R}^{m} \times \mathbb{R}^{n-m} \) and \(\int_{0}^{\infty} tK(t) \, dt < \infty \). On the other hand, when \(K(x) \geq 0 \) in (1.2), Oleinik [15] shows that if \(K(x) \geq C/|x|^{p} \) at infinity for some \(p < 2 \), then (1.2) has no solution in \(\mathbb{R}^{n} \). The case when \(K(x) \) behaves like \(C/|x|^{2} \) at infinity is left unsettled for \(n \geq 3 \). In this section, we give several theorems to settle the nonexistence question of (1.2), in particular we settle the case when \(K(x) \) behaves like \(C/|x|^{2} \) at infinity.

We need some notations first. Let \(u \) be a smooth function in \(\mathbb{R}^{n} \) and \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R}^{n} \). Following Ni [13] and Sattinger [16], we define the averages of \(u \) and \(K \) by \(\bar{u}(r) \) and \(\bar{K}(r) \),

\[
\bar{u}(r) = \frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} u(x) \, dS,
\]

\[
\bar{K}(r) = \left(\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)} \right)^{-1}.
\]

We have

Lemma 5.1. Let \(u(x) \) be a solution of (1.2) in \(\mathbb{R}^{n} \) and \(K(x) \geq 0 \). Then \(\bar{u}(r) \) satisfies

\[
\begin{cases}
\bar{u}''(r) + \frac{n-1}{r} \bar{u}'(r) \geq K(r) e^{2\bar{u}(r)}, & r \in (0, \infty), \\
\bar{u}(0) = u(0), & \bar{u}'(0) = 0.
\end{cases}
\]

Proof. From the definition of \(\bar{u} \), we have

\[
\bar{u}'(r) = \frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} \nabla u(x) \cdot \xi \, dS = \frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} \sum_{i} u_{i} \xi_{i} \, dS.
\]

Thus,

\[
\omega_{n} \left(r^{n-1} \bar{u}'(r) - R^{n-1} \bar{u}'(R) \right)
\]

\[
= \int_{D} \Delta u \, dx = \int_{R} \int_{|x|=r} \Delta u \, dS \, dt
\]

where \(D = \{ x \in \mathbb{R}^{n}: R < |x| < r \} \). Hence we have

\[
\omega_{n} \left(r^{n-1} \bar{u}'(r) \right)' = \int_{|x|=r} \Delta u \, dS = \int_{|x|=r} K(x) e^{2u(x)} \, dS.
\]

Now Jensen’s and Cauchy-Schwarz’s inequalities give

\[
e^{2\bar{u}(r)} = \left(e^{\bar{u}(r)} \right)^{2} \leq \left(\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} e^{u(x)} \, dS \right)^{2}
\]

\[
\leq \left(\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} K(x) e^{2u(x)} \, dS \right) \left(\frac{1}{\omega_{n} r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)} \right).
\]
Hence
\begin{equation}
\frac{1}{\omega_r r^{n-1}} \int_{|x|=r} K(x) e^{2u(x)} dS \geq \bar{K}(r) e^{2\bar{u}(r)}.
\end{equation}

Combining (5.5) and (5.7), we obtain the first equation of (5.3). \(\bar{u}(0) = u(0) \) and \(\bar{u}'(0) = 0 \) can also be easily obtained. This completes the proof. Q.E.D.

Now we can state our main nonexistence theorems.

Theorem 5.1. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n \). If \(\bar{K}(r) \), as defined in (5.2), satisfies
\begin{equation}
\bar{K}(r) \geq C/r^2
\end{equation}
for \(r \geq R_0 \) for some constant \(C > 0 \), then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).

Proof. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^n \). Then the average \(\bar{u} \) satisfies (5.3) from Lemma 5.1. Let \(\bar{u}(0) = u(0) = \alpha \). Then \(\bar{u} \) also satisfies
\begin{equation}
\bar{u}'(r) \geq \int_0^r \left(\frac{s}{r} \right)^{n-2} \bar{K}(s) e^{2\bar{u}(s)} ds,
\end{equation}
\begin{equation}
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] e^{2\bar{u}(s)} ds.
\end{equation}
Hence
\begin{equation}
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^{r/2} \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] e^{2\bar{u}(s)} ds
= \alpha + \frac{1}{n-2} \cdot e^{2\alpha} \cdot \left[1 - \left(\frac{1}{2} \right)^{n-2} \right] \cdot \int_0^{r/2} \bar{K}(s) ds.
\end{equation}
Thus there exists a constant \(R_0 \), such that \(\bar{u}(R_0) \geq 1 \). For \(r \geq R_0 \), we have
\begin{equation}
\bar{u}(r) \geq 1 + \frac{1}{n-2} \int_{R_0}^r \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] e^{2\bar{u}(s)} ds
\geq 1 + \frac{1}{n-2} \int_{R_0}^r \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^2(s) ds.
\end{equation}
In view of (5.8) and the proof of Theorem 2.1, we conclude that no function \(\bar{u} \) can satisfy (5.12) in \([R_0, \infty) \). This completes the proof. Q.E.D.

Theorem 5.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n \). If \(\bar{K}(r) \), as defined in (5.2), satisfies
\begin{equation}
\bar{K}(r) \geq C/r^a \quad \text{for} \quad r \geq R_0,
\end{equation}
\begin{equation}
\text{there exist} \ \alpha > 0, \ R_0 > 0 \ \text{and} \ C > 0, \ \text{such that}
\end{equation}
\begin{equation}
\int_R^{(P-1)R} r\bar{K}(r) \ dr \geq \epsilon \quad \text{for} \ R \geq R_0,
\end{equation}
then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).
Proof. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^n \). Then as in the proof of Theorem 5.1, we have (5.9)-(5.12). But from (5.13), (5.14) and Theorem 2.2, there is no function \(\bar{u}(r) \) defined on \([R_0, \infty)\) satisfying (5.12). This contradiction proves the theorem. Q.E.D.

Theorem 5.3. Let \(K(x) \geq 0 \) be a locally Hölder continuous function. If \(\bar{K}(r) \), as defined in (5.2), satisfies

\[
\int_0^r s \bar{K}(s) \, ds \text{ is strictly increasing in } [0, \infty) \quad \text{and} \\
\int_0^\infty s \bar{K}(s) \, ds = \infty,
\]

then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \). In particular, if \(\bar{K}(r) \) satisfies (5.15) and \(0 \leq \bar{K}(r) \leq C/r^2 \) for \(r \geq R_1 \) for some constants \(C > 0 \) and \(R_1 > 0 \), then \(\bar{K}(r) \) also satisfies (5.16) and hence (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).

Proof. Using the proofs of Theorems 5.1 and 2.3, we can easily obtain a proof. We omit the details. Q.E.D.

Theorem 5.4. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n \) and \(\bar{K}(t) \) be a locally Hölder continuous function on \([0, \infty)\). Let the average \(\bar{K}(r) \) of \(K(x) \) in the sense of (5.2) satisfy

\[
K(r) \geq 0 \quad \text{if } \alpha_{i+1} + \beta_i < r < \alpha_{i+1} + \beta_{i+1}, \\
K(r) \geq \bar{K}(r-\beta_i) \quad \text{if } \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_i
\]

for \(i = 0, 1, 2, \ldots \), where \(\{\alpha_i\}_{i=0}^\infty \) and \(\{\beta_i\}_{i=0}^\infty \) are two sequences satisfying the same conditions as in Theorem 2.4. If

\[
\begin{cases}
\frac{3}{3-n} u''(r) + \frac{n-1}{r} u'(r) = \bar{K}(r) e^{2u(r)} & \text{in } (0, \infty), \\
u(0) = \alpha, \quad u'(0) = 0
\end{cases}
\]

does not possess any locally bounded solution in \([0, \infty)\) for any real number \(\alpha \), then (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).

Proof. The proof is similar to that of Theorem 2.4. Hence we omit the details. Q.E.D.

6. The case \(n = 2 \). In the case \(n = 2 \) and \(K(x) \geq 0 \), Ni [14] shows that: If \(K(x) \neq 0 \) and \(K(x) \leq C/|x|^l \) at infinity for some \(l > 2 \), then for every \(\alpha \in (0, \beta) \) where \(\beta = \min(8, (l-2)/3) \), there exists a solution \(u \) of (1.2) such that

\[
\log |x|^{\alpha} - C' \leq u(x) \leq \log |x|^{\alpha} + C''
\]

for \(|x| \) large, where \(C' \) and \(C'' \) are two constants.
Later, McOwen [10, 11] improves this result by giving a sharp bound on β and sharp behavior of u at infinity. For the nonexistence results, Sattinger [16] proves that K be a smooth function on \mathbb{R}^2. If $K \geq 0$ on \mathbb{R}^2 and $K(x) \geq C/|x|^2$ at infinity, then (1.2) has no solution on \mathbb{R}^2. Ni [14] improves Sattinger’s result to include the K such as $K = (1 + \sin r)/r^2$.

In this section, we give an existence result which overlaps parts of the results of Ni [14] and McOwen [10, 11] but with different method. We also give some nonexistence results improving Ni’s result.

Theorem 6.1. Let $K(x) \geq 0$ be a locally Hölder continuous function on \mathbb{R}^2. Let $K_1(r)$ and $K_2(r)$ be two locally Hölder continuous functions on $[0, \infty)$. If

\begin{align}
K_1(0) &> 0, \\
0 &\leq K_1(|x|) \leq K(x) \leq K_2(|x|) \quad \text{for all } x \in \mathbb{R}^2, \\
\text{there exists } \alpha > 0 \text{ such that } \int_0^\infty s^{(1+2\alpha)}K_2(s)\,ds < \infty,
\end{align}

then (1.2) has infinitely many solutions on \mathbb{R}^2 with logarithmic growth at infinity.

Proof. Consider the equations

\begin{align}
\Delta v &= K_1(|x|)e^{2v}, \quad x \in \mathbb{R}^2, \\
\Delta w &= K_2(|x|)e^{2w}, \quad x \in \mathbb{R}^2.
\end{align}

From (6.2), it is easy to see that a solution v of (6.4) is a supersolution of (1.2) and a solution w of (6.5) is a subsolution of (1.2) in \mathbb{R}^2. It is natural to seek solutions of v and w depending only on $|x|$. Consider now (6.5). We try to find a solution $w(|x|)$ of (6.5) with $w(0) = \beta$ and $w'(0) = 0$. Then (6.5) is equivalent to the following integral equation

\begin{equation}
w(r) = \beta + \int_0^r s\log\left(\frac{r}{s}\right)K_2(s)e^{2w(s)}\,ds.
\end{equation}

Now we choose $0 < \alpha' < \alpha$ and β such that

\begin{align}
\int_0^e s\log\left(\frac{e}{s}\right)K_2(s)e^{2(\beta+1)}\,ds &< \frac{1}{2}, \\
\int_0^e sK_2(s)e^{2(\beta+1)}\,ds &< \frac{\alpha'}{2}, \\
\int_e^\infty s^{(1+2\alpha')}K_2(s)e^{2(\beta+1)}\,ds &< \frac{\alpha'}{2}, \\
\int_e^\infty s^{(1+2\alpha')}\log\left(\frac{e}{s}\right)K_2(s)e^{2(\beta+1)}\,ds &< \frac{1}{2}.
\end{align}

Define the function $A_\beta(r)$ by

\begin{align}
A_\beta(r) &= (\beta + 1) \quad \text{if } 0 \leq r \leq e, \\
A_\beta(r) &= (\beta + 1) + \alpha'\log(r/e) \quad \text{if } e \leq r.
\end{align}
Now let X denote the locally convex space of all continuous functions on $[0, \infty)$ with the usual topology and consider the set

$$Y = \{ w \in X: \beta \leq w(r) \leq A_{\beta}(r), \ r \in [0, \infty) \}.$$

It is easy to see that Y is a closed convex subset of X. Let T be the mapping

$$(T w)(r) = \beta + \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} \, ds.$$

We shall prove that T is a continuous mapping from Y into itself such that TY is relatively compact.

First, we verify that $TY \subset Y$. Assume $w \in Y$. Hence we have

$$\beta \leq w(r) \leq A_{\beta}(r) \quad \text{for} \quad r \in [0, \infty).$$

It is easy to see that $T w$ is also continuous and $\beta \leq T w(r)$ for $r \in [0, \infty)$. Now for $0 \leq r \leq e$, we have

$$(T w)(r) = \beta + \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} \, ds \leq \beta + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2w(s)} \, ds \leq \beta + (\beta + 1) = A_{\beta}(r).$$

For $e \leq r$, we have

$$(T w)(r) = \beta + \int_0^e s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} \, ds + \int_e^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} \, ds \leq \beta + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2A_{\beta}(s)} \, ds + \int_e^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2A_{\beta}(s)} \, ds \leq \beta + \log \left(\frac{r}{e} \right) \int_0^e s K_2(s) e^{2(\beta + 1)} \, ds + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} \, ds + \log \left(\frac{r}{e} \right) \int_e^{\infty} s^{(1+2\alpha')} K_2(s) e^{2(\beta + 1)} \, ds + \int_e^{\infty} s^{(1+2\alpha')} \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} \, ds \leq \beta + \alpha' \log \left(\frac{r}{e} \right) + \frac{1}{2} + \alpha' \log \left(\frac{r}{e} \right) + \frac{1}{2} = (\beta + 1) + \alpha' \log \left(\frac{r}{e} \right) = A_{\beta}(r).$$

This verifies that $TY \subset Y$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now let \(\{ w_m \}_{n=1}^{\infty} \subset Y \) be a sequence converges to \(w \in Y \) in the space \(X \). Then \(\{ w_m \} \) converges to \(w \) uniformly on any compact interval on \([0, \infty)\). Now

\[
(6.17) \quad |T w_m(r) - T w(r)| \leq \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) \left| e^{2w_m(s)} - e^{2w(s)} \right| ds
\]

But

\[
(6.18) \quad s \log \left(\frac{r}{s} \right) K_2(s) \left| e^{2w_m(s)} - e^{2w(s)} \right| \leq s \log \left(\frac{r}{s} \right) K_2(s) \left(e^{2A_\beta(s)} - e^{2\beta} \right)
\]

and \(s \log(r/s) K_2(s) e^{2A_\beta(s)} \) is integrable. Hence from (6.17) and the uniform convergence of \(w_m \) to \(w \) on any compact interval, we conclude that \(T w_m \) converges to \(T w \) in \(X \). This verifies that \(T \) is continuous in \(Y \). We can easily compute that

\[
(6.19) \quad (T w)'(r) = \int_0^r \left(\frac{s}{r} \right) K_2(s) e^{2w(s)} ds
\]

Hence, on any compact interval of \([0, \infty)\), \(TY \) is uniformly bounded and equicontinuous. This proves that \(TY \) is relatively compact in \(Y \). Thus we can apply the Schauder-Tychonoff fixed point theorem to conclude that \(T \) has a fixed point \(w \) in \(Y \). This fixed point \(w \) is a solution of (6.6) and hence a solution of (6.5). Note that, when we have a solution \(w \) of (6.6) with a given \(\beta \), then we also have a solution \(w \) of (6.6) with \(\beta \) replaced by smaller \(\beta \)’s.

Similarly, we can construct solution \(v(|x|) \) of (6.4) such that \(v(0) = \beta' \) and \(v'(0) = 0 \). For a given \(\beta' \), since \(K_1(0) > 0 \), we can choose \(\beta < \beta' \), such that (6.6) has a solution \(w \) and \(w(r) < v(r) \) for all \(r \in [0, \infty) \). Using Theorem 2.10 of Ni [13], we conclude that (1.2) has a solution \(u(x) \) between \(w(|x|) \) and \(v(|x|) \). Now we can choose another \(\beta' \) smaller than this \(\beta \) to repeat the arguments. This completes the proof of this theorem.

Q.E.D.

Theorem 6.2. Let \(K(x) > 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \). If \(\bar{K}(r) \), as defined in (5.2), satisfies

\[
(6.20) \quad \bar{K}(r) \geq C/r^2(\log r)^a
\]

for \(r \geq R_0 \) for some constants \(C > 0 \) and \(a > 0 \), then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^2 \).

Proof. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^2 \). Then the average \(\bar{u} \) satisfies (5.3) for \(n = 2 \). Letting \(\bar{u}(0) = \beta = u(0) \), we have

\[
(6.21) \quad \bar{u}'(r) \geq \int_0^r \left(\frac{s}{r} \right) \bar{K}(s) e^{2\bar{u}(s)} ds,
\]

\[
(6.22) \quad \bar{u}(r) \geq \beta + \int_0^r s \log \left(\frac{s}{r} \right) \bar{K}(s) e^{2\bar{u}(s)} ds.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Without loss of generality, we may assume that \(K(0) > 0\) and hence \(\bar{K}(0) > 0\). For \(r > e\), we have

\[
(6.23) \quad \bar{u}(r) \geq \beta + \int_0^r s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

\[
+ \int_1^r s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

\[
\geq \beta + \int_0^r s \log r \bar{K}(s) e^{2\beta ds} + \int_1^r s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

\[
\geq \beta + C_1 \log r + \int_e^r s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds.
\]

Thus there exists a constant \(R_0\) such that, for \(r \geq R_0\),

\[
(6.24) \quad \bar{u}(r) \geq C_2 \log r + \int_r^{R_0} s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

\[
\geq C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s}\right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

for some \(C_2 > 0\). Let

\[
(6.25) \quad \bar{u}(r) = \frac{1}{2} C_2 \log r + v(r) \quad \text{for } r \geq R_0.
\]

From (6.24), we have

\[
(6.26) \quad v(r) \geq \frac{1}{2} C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s}\right) \bar{K}(s) s^{c_2} e^{2v(s)} ds
\]

\[
\geq \frac{1}{2} C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s}\right) \bar{K}(s) s^{c_2} v^2(s) ds.
\]

But from assumption (6.20), we have

\[
(6.23) \quad \bar{K}(s) s^{c_2} \geq C/s^{2-c_2}(\log s)^\alpha \geq C/s^2
\]

for \(s \geq R_1 > R_0\). Hence from Theorem 3.1, there is no \(v\) in \([R_0, \infty)\) satisfying (6.26). This completes the proof of this theorem.

Theorem 6.3. Let \(K(x) \geq 0\) be a locally Hölder continuous function in \(\mathbb{R}^2\). If \(\bar{K}(r)\), as defined in (5.2), satisfies

\[
(6.24) \quad \int_0^r s^{1+\alpha} \bar{K}(s) ds \text{ is monotonically strictly increasing in } [0, \infty) \text{ for all } \alpha > 0.
\]

\[
(6.25) \quad \text{For given any } \alpha > 0, \text{ there exists an } R_\alpha > 0 \text{ such that }
\]

\[
\left(\frac{\log s}{\log r}\right)^m \leq \int_0^s t^{1+\alpha} \bar{K}(t) dt / \int_0^r t^{1+\alpha} \bar{K}(t) dt
\]

for some \(m > 0\) and for all \(r \geq s \geq R_\alpha\), then (1.2) does not possess any locally bounded solution in \(\mathbb{R}^2\).
PROOF. Assume that u is a locally bounded solution of (1.2) in \mathbb{R}^2. Then as in the proof of Theorem 6.2, we have $(6.21)-(6.26)$. Now we can let $w(r)\log r = v(r)$ for $r > R_0$. Then from (6.26), we have

\begin{equation}
(6.27) \quad w(r) \geq \frac{1}{2}C_2 + \int_{R_0}^r s \left(1 - \frac{\log s}{\log r} \right) \tilde{K}(s) s^{C_2} v^2(s) \, ds.
\end{equation}

Now using a similar argument as in the proof of Theorem 3.3, we conclude that there is no function w satisfying (6.27). This contradiction proves the theorem. Q.E.D.

THEOREM 6.4. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2 and $\tilde{K}(t)$ be a locally Hölder continuous function on $[0, \infty)$. Let the average $\tilde{K}(r)$ of $K(x)$ in the sense of (5.2) satisfy the same assumptions as in Theorem 5.4. If

\begin{equation}
(6.28) \begin{cases}
\frac{u''(r)}{r} + \frac{u'(r)}{r} = \tilde{K}(r) e^{2u(r)} \quad \text{in } (0, \infty), \\
u(0) = \alpha, \quad u'(0) = 0
\end{cases}
\end{equation}

does not possess any locally bounded solution in $[0, \infty)$ for any real number α, then (1.2) does not possess any locally bounded solution in \mathbb{R}^2.

PROOF. The proof is similar to that of Theorem 2.4. Hence we omit the details. Q.E.D.

7. The case $n = 1$. In this case, we consider only the situation $K(x) \geq 0$ in (1.2). We give a main existence result which has an extension to the higher-dimensional case. We also give some nonexistence results.

THEOREM 7.1. Let $K(x) \geq 0$ be a Hölder continuous function in \mathbb{R}. If $K(0) > 0$ and there exists an $\alpha > 0$, such that

\begin{equation}
(7.1) \quad \int_{-\infty}^{\infty} e^{2|x|} K(x) \, dx < \infty,
\end{equation}

then (1.2) has infinitely many locally bounded solutions in \mathbb{R} with linear growth at $|x| = \infty$.

PROOF. We shall seek solution u such that $u(0) = \beta$ and $u'(0) = 0$. Consider now $x \geq 0$. In this situation, (1.2) is equivalent to the integral equation

\begin{equation}
(7.2) \quad u(x) = \beta + \int_0^x (x - t) K(t) e^{2u(t)} \, dt, \quad x \geq 0.
\end{equation}

Now choose $\beta \in \mathbb{R}$ so that

\begin{equation}
(7.3) \quad \int_0^1 K(t) e^{2(\beta + 1)} \, dt \leq \min \left\{ \frac{\alpha}{2}, 1 \right\},
\end{equation}

\begin{equation}
(7.4) \quad \int_1^\infty K(t) e^{2\alpha e^{2(\beta + 1)}} \, dt \leq \frac{\alpha}{2}.
\end{equation}

Let

\begin{equation}
A(x) = \begin{cases}
(\beta + 1) & \text{if } 0 \leq x \leq 1, \\
(\beta + 1) + \alpha x & \text{if } 1 < x.
\end{cases}
\end{equation}
As in the proofs of Theorems 2.4 and 3.4, we let X denote the locally convex space of all continuous functions on $[0, \infty)$ with the usual topology and consider the set

$$Y = \{ y \in X : \beta \leq y(x) \leq A(x) \text{ for } x \geq 0 \}.$$

Clearly, Y is a closed convex subset of X. Now define the mapping T by

$$(Ty)(x) = \beta + \int_0^x (x - t) K(t) e^{2y(t)} dt.$$

If $y \in Y$, then $\beta \leq y(x) \leq A(x)$. Hence we have

$$(Ty)(x) = \beta + \int_0^x (x - t) K(t) e^{2y(t)} dt \geq \beta.$$

On the other hand, for $0 \leq x \leq 1$, we have

$$(Ty)(x) = \beta + \int_0^1 (x - t) K(t) e^{2y(t)} dt \leq \beta + \int_0^1 K(t) e^{2(\beta + 1)} dt \leq \beta + 1 = A(x).$$

For $1 < x$, we have

$$(Ty)(x) = \beta + \int_0^1 (x - t) K(t) e^{2y(t)} dt + \int_1^x (x - t) K(t) e^{2y(t)} dt \leq \beta + x \cdot \int_0^1 K(t) e^{2(\beta + 1)} dt + x \cdot \int_1^\infty K(t) e^{2\alpha't} e^{2(\beta + 1)} dt \leq \beta + \frac{\alpha}{2} \cdot x + \frac{\alpha}{2} x \leq (\beta + 1) + ax = A(x).$$

Hence T maps Y into itself. As in the proofs of Theorems 2.4, 3.4 and 4.1, we can easily verify that T is continuous and TY is precompact. Hence T has a fixed point $y \in Y$. This fixed point y is a solution of (1.2) for $x \geq 0$ with $y(0) = \beta$ and $y'(0) = 0$.

Similarly, we can find a solution of (1.2) for $x \leq 0$ with $y(0) = \beta$ and $y'(0) = 0$ provided that $\beta \in \mathbb{R}$ is properly selected. It is also easy to see that if y is a solution of (1.2) with $y(0) = \beta$ and $y'(0) = 0$, then there is also solution y with $y(0) = \beta'$ and $y'(0) = 0$ provided that $\beta' < \beta$. The linear growth of solutions at $|x| = \infty$ can be easily established as in the proof of Theorem 4.1. This completes the proof of this theorem. Q.E.D.

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] and Kawano, Kusano and Naito [3].

Theorem 7.2. Let $K(x) \geq 0$ be a locally Hölder continuous function in $\mathbb{R} = \mathbb{R} \times \mathbb{R}^{-1}$. Let $\phi\ast(x_1)$ and $\phi\ast(x_1)$ be two locally Hölder continuous function in \mathbb{R}. If

$$0 \leq \phi\ast(x_1) \leq K(x) \leq \phi\ast(x_1) \text{ for all } x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{-1},$$

$$\phi\ast(0) > 0 \text{ and } \int_{-\infty}^\infty e^{2\alpha|x_1|} \phi\ast(x_1) dx_1 < \infty \text{ for some } \alpha > 0,$$

then equation (1.2) has infinitely many locally bounded solutions in \mathbb{R}.

PROOF. The proof is actually similar to that of Theorem 4.2. We omit the details.

Q.E.D.

Now let \(u \) be a smooth function on \(\mathbb{R} \) and \(K(x) \geq 0 \) be a continuous function on \(\mathbb{R} \). We define the averages \(\bar{u} \) and \(\bar{K} \) by

\[
\bar{u}(r) = \frac{1}{2} [u(r) + u(-r)], \quad r \geq 0, \\
\bar{K}(r) = \left[\frac{1}{2} (K(r)^{-1} + K(-r)^{-1}) \right]^{-1}, \quad r \geq 0.
\]

Our nonexistence results are

Theorem 7.3. Let \(K(x) \geq 0 \) be a locally Hölder continuous function on \(\mathbb{R} \). If the average \(\bar{K}(r) \) of \(K(x) \) in the sense of (7.12) satisfies

\[
\bar{K}(r) > C/r^a
\]

for \(r \geq R_0 \) and for some constants \(C > 0, a > 0 \), then equation (1.2) does not possess any locally bounded solution on \(\mathbb{R} \).

PROOF. Assume that \(u(x) \) be a solution of (1.2) in \(\mathbb{R} \). Then we have

\[
\bar{u}''(r) = \frac{1}{2} [u''(r) + u''(-r)]
\]

\[
= \frac{1}{2} [K(r) e^{2u(r)} + K(-r) e^{2u(-r)}].
\]

But we have

\[
e^{2\bar{u}(r)} = \left(e^{\bar{u}(r)} \right)^2 \leq \left[\frac{1}{2} (e^{u(r)} + e^{u(-r)}) \right]^2
\]

\[
\leq \left[\frac{1}{2} (K(r) e^{2u(r)} + K(-r) e^{2u(r)}) \right] \cdot \left[\frac{1}{2} (K(r)^{-1} + K(-r)^{-1}) \right].
\]

Hence we have

\[
\bar{u}''(r) \geq \bar{K}(r) e^{2\bar{u}(r)}, \quad r \geq 0.
\]

It is also easy to see that \(\bar{u}(0) = u(0) \) and \(\bar{u}'(0) = 0 \). From (7.16), we have

\[
\bar{u}'(r) \geq \int_0^r \bar{K}(t) e^{2\bar{u}(t)} dt,
\]

\[
\bar{u}(r) \geq \beta + \int_0^r (r-t) \bar{K}(t) e^{2\bar{u}(t)} dt.
\]

Without loss of generality, we may assume that \(K(0) > 0 \) and hence \(\bar{K}(0) > 0 \). For \(r \geq 1 \), we have

\[
\bar{u}(r) \geq \beta + \int_0^1 (r-t) \bar{K}(t) e^{2\bar{u}(t)} dt + \int_1^r (r-t) \bar{K}(t) e^{2\bar{u}(t)} dt
\]

\[
\geq \beta + r \int_0^1 (1-t) \bar{K}(t) e^{2\beta} dt + \int_1^r (r-t) \bar{K}(t) e^{2\bar{u}(t)} dt
\]

\[
\geq 2C_1 \cdot r + \int_{R_1}^r (r-t) \bar{K}(t) e^{2\bar{u}(t)} dt.
\]
for $r \geq R_1 > 1$ and for some $C_1 > 0$. Now let $v(r) = \tilde{u}(r) + C_1 \cdot r$. We have from (7.19)

$$v(r) \geq C_1 \cdot r + \int_{R_1}^{r} (r - t) \tilde{K}(t) e^{2C_1t} \cdot e^{2v(t)} \, dt.$$

Let $v(r) = w(r) \cdot r$, we have

$$w(r) \geq C_1 + \int_{R_1}^{r} (1 - \frac{t}{r}) \tilde{K}(t) e^{2C_1t} \cdot e^{2w(t)} \, dt.$$

Now let $\tilde{K}(t) = t^{-1} \tilde{K}(t) e^{2C_1t}$. We have from (7.13)

$$\tilde{K}(t) \geq C/t^2$$

for $t \geq R_2 > R_1$ for some $C > 0$. But (7.21) becomes

$$w(r) \geq C_1 + \int_{R_1}^{r} t \left(1 - \frac{t}{r} \right) \tilde{K}(t) w^2(t) \, dt.$$

From Theorem 2.1, there is no function w satisfying (7.23). This contradiction proves the theorem. Q.E.D.

Theorem 7.4. Let $K(x) > 0$ be a locally Hölder continuous function on \mathbb{R}. If the average $\overline{K}(r)$ of $K(x)$ in the sense of (7.12) satisfies

$$\int_{0}^{r} e^{\alpha s} \overline{K}(s) \, ds \text{ is strictly increasing and } \int_{0}^{\infty} e^{\alpha s} \overline{K}(s) \, ds = \infty$$

for all $\alpha > 0$.

For any given $\alpha > 0$, there exists $R_{\alpha} > 0$, such that

$$\left(\frac{s}{r} \right)^{m} \leq \int_{0}^{s} e^{\alpha s} \overline{K}(t) \, dt / \int_{0}^{r} e^{\alpha s} \overline{K}(t) \, dt$$

for some $m > 0$ and for $r \geq s \geq R_{\alpha}$, then equation (1.2) does not possess any locally bounded solution in \mathbb{R}.

Proof. Using the proofs of Theorems 7.3 and 2.3, we can easily prove this theorem. We omit the details. Q.E.D.

Theorem 7.5. Let $K(x) > 0$ be a locally Hölder continuous function in \mathbb{R} and $\tilde{K}(t)$ be a locally Hölder continuous function in $[0, \infty)$. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (7.12) satisfy the same assumptions as in Theorem 5.4. If

$$\begin{cases} u''(r) = \tilde{K}(r) e^{2u(r)} \quad \text{in } (0, \infty), \\ u(0) = \beta, \quad u'(0) = 0 \end{cases}$$

does not possess any locally bounded solution in $[0, \infty)$ for any real number β, then equation (1.2) does not possess any locally bounded solution in \mathbb{R}.

Proof. The proof is quite similar to that of Theorem 2.4. Hence we omit it. Q.E.D.

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
15. O. A. Oleinik, On the equation $\Delta u + k(x) e^u = 0$, Russian Math. Surveys 33 (1978), 243–244.

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan 300, Republic of China (Current address of Jenn-Tsann Lin)

Current address (Kuo-Shung Cheng): Institute of Applied Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China