Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On maximal functions associated to hypersurfaces and the Cauchy problem for strictly hyperbolic operators

Author: Christopher D. Sogge
Journal: Trans. Amer. Math. Soc. 304 (1987), 733-749
MSC: Primary 42B25; Secondary 35L15
MathSciNet review: 911093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a maximal Fourier integral theorem for the types of operators which arise in the study of maximal functions associated to averaging over hypersurfaces and also the Cauchy problem for hyperbolic operators. We apply the Fourier integral theorem to generalize Stein's spherical maximal theorem (see [8]) and also to prove a sharp theorem for the almost everywhere convergence to $ {L^p}$ initial data of solutions to the Cauchy problem for second order strictly hyperbolic operators. Our results improve those of Greenleaf [3] and Ruiz [6]. We also can prove almost everywhere convergence to $ {L^2}$ initial data for operators of order $ m \geqslant 3$.

References [Enhancements On Off] (What's this?)

  • [1] R. M. Beals, $ {L^p}$ boundedness of Fourier integral operators, Mem. Amer. Math. Soc., No. 264, Amer. Math. Soc., Providence, R.I., 1982. MR 660216 (84m:42026)
  • [2] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II, Interscience, New York, 1982. MR 0065391 (16:426a)
  • [3] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Math. J. 30 (1982), 519-537. MR 620265 (84i:42030)
  • [4] L. Hörmander, The analysis of linear partial differential operators, Vols. I-IV, Springer-Verlag, New York and Berlin, 1983, 1985.
  • [5] P. D. Lax, Asymptotic solution of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646. MR 0097628 (20:4096)
  • [6] A. Ruiz, On a.e. convergence of solutions of hyperbolic equations to $ {L^p}$-initial data, Trans. Amer. Math. Soc. 287 (1985), 167-188. MR 766212 (86g:35112)
  • [7] C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces in $ {{\mathbf{R}}^n}$, Invent. Math. 82 (1985), 543-556. MR 811550 (87d:42030)
  • [8] E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175. MR 0420116 (54:8133a)
  • [9] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. MR 508453 (80k:42023)
  • [10] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [11] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J., 1981.
  • [12] F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vol. II, Plenum Press, New York and London, 1982. MR 597145 (82i:58068)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 35L15

Retrieve articles in all journals with MSC: 42B25, 35L15

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society