Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Crossed products of continuous-trace $ C\sp \ast$-algebras by smooth actions


Authors: Iain Raeburn and Jonathan Rosenberg
Journal: Trans. Amer. Math. Soc. 305 (1988), 1-45
MSC: Primary 46L55; Secondary 22D25, 46L40, 46M20
MathSciNet review: 920145
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study in detail the structure of $ {C^{\ast}}$-crossed products of the form $ A \rtimes {}_\alpha G$, where $ A$ is a continuous-trace algebra and $ \alpha $ is an action of a locally compact abelian group $ G$ on $ A$, especially in the case where the action of $ G$ on $ \hat A$ has a Hausdorff quotient and only one orbit type. Under mild conditions, the crossed product has continuous trace, and we are often able to compute its spectrum and Dixmier-Douady class. The formulae for these are remarkably interesting even when $ G$ is the real line.


References [Enhancements On Off] (What's this?)

  • [1] T. Becker, A few remarks on the Dauns-Hofmann theorems for $ {C^{\ast}}$-algebras, Arch. Math. (Basel) 43 (1984), 265-269. MR 766434 (86h:46089)
  • [2] P. Bernat et al., Représentations des groupes de Lie résolubles, Monographies de la Soc. Math. de France, no. 4, Dunod, Paris, 1972.
  • [3] A. Connes, An analogue of the Thom isomorphism for crossed products of a $ {C^{\ast}}$-algebra by an action of R, Adv. in Math. 39 (1981), 31-55. MR 605351 (82j:46084)
  • [4] J. Dixmier, $ {C^{\ast}}$-algebras, North-Holland, Amsterdam, 1977. MR 0458185 (56:16388)
  • [5] G. A. Elliott, Some $ {C^{\ast}}$-algebras with outer derivations. III, Ann. of Math. (2) 106 (1977), 121-143. MR 0448093 (56:6403)
  • [6] A. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43. MR 0033830 (11:497e)
  • [7] J. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124-138. MR 0136681 (25:146)
  • [8] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. MR 0345092 (49:9831)
  • [9] E. C. Gootman and J. Rosenberg, The structure of crossed product $ {C^{\ast}}$-algebras: A proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 (1979), 283-298. MR 537063 (80h:46091)
  • [10] P. Green, $ {C^{\ast}}$-algebras of transformation groups with smooth orbit space, Pacific J. Math. 72 (1977), 71-97. MR 0453917 (56:12170)
  • [11] -, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250. MR 0493349 (58:12376)
  • [12] -, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104. MR 568977 (83d:46080)
  • [13] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques, vol. 2, CEDIC/Nathan, Paris, 1980. MR 644979 (83f:22004)
  • [14] R. H. Herman and J. Rosenberg, Norm-close group actions on $ {C^{\ast}}$-algebras, J. Operator Theory 6 (1981), 25-37. MR 636998 (84b:46085)
  • [15] M. Hirsch, Differential topology, Graduate Texts in Math., no. 33, Springer-Verlag, Berlin and New York, 1976. MR 0448362 (56:6669)
  • [16] G. G. Kasparov, $ K$-theory, group $ {C^{\ast}}$-algebras, and higher signatures (conspectus), Part 2, preprint, Chernogolovka, U.S.S.R., 1981.
  • [17] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, Wiley-Interscience, New York, 1963. MR 0152974 (27:2945)
  • [18] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1963), 19-30. MR 0179792 (31:4034)
  • [19] G. W. Maçkey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 0089999 (19:752b)
  • [20] C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-33. MR 0414775 (54:2867)
  • [21] -, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), 35-58. MR 0414776 (54:2868)
  • [22] P. S. Muhly and D. P. Williams, Transformation group $ {C^{\ast}}$-algebras with continuous trace. II, J. Operator Theory 11 (1984), 109-124. MR 739796 (85k:46074)
  • [23] R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295-323. MR 0126506 (23:A3802)
  • [24] G. K. Pedersen, $ {C^{\ast}}$-algebras and their automorphism groups, London Math. Soc. Monographs, vol. 14, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [25] -, Dynamical systems and crossed products, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 271-283. MR 679707 (84a:46151)
  • [26] J. Phillips and I. Raeburn, Automorphisms of $ {C^{\ast}}$-algebras and second Čech cohomology, Indiana Univ. Math. J. 29 (1980), 799-822. MR 589649 (82b:46089)
  • [27] -, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), 215-241. MR 749160 (86m:46058)
  • [28] I. Raeburn and D. P. Williams, Pull-backs of $ {C^{\ast}}$-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 287 (1985), 755-777. MR 768739 (86m:46054)
  • [29] M. A. Rieffel, Applications of strong Morita equivalence to transformation group $ {C^{\ast}}$-algebras, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 299-310. MR 679709 (84k:46046)
  • [30] J. Rosenberg, Homological invariants of extensions of $ {C^{\ast}}$-algebras, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 35-75. MR 679694 (85h:46099)
  • [31] -, The dual topology of a crossed product and applications to group representations, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I., 1982, pp. 361-363.
  • [32] -, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, Advances in Invariant Subspaces and Other Results of Operator Theory (G. Arsene, R. G. Douglas, et al., eds.), Proc. 9th Internat. Conf. On Operator Theory, Timisoara and Herculane, Birkhäuser, Basel, 1986, pp. 301-330. MR 901077 (88k:46081)
  • [33] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [34] M. Takesaki, Covariant representations of $ {C^{\ast}}$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303. MR 0225179 (37:774)
  • [35] A. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. Dissertation, Univ. of Pennsylvania, Philadelphia, 1981.
  • [36] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math., vol. 61, Springer-Verlag, Berlin and New York, 1978. MR 516508 (80b:55001)
  • [37] D. Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83-93. MR 0338132 (49:2898)
  • [38] D. P. Williams, The topology on the primitive ideal space of transformation group $ {C^{\ast}}$-algebras and $ CCR$ transformation group $ {C^{\ast}}$-algebras, Trans. Amer. Math. Soc. 266 (1981), 335-359. MR 617538 (82h:46081)
  • [39] -, Transformation group $ {C^{\ast}}$-algebras with continuous trace, J. Funct. Anal. 41 (1981), 40-76. MR 614226 (83c:46066)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L55, 22D25, 46L40, 46M20

Retrieve articles in all journals with MSC: 46L55, 22D25, 46L40, 46M20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1988-0920145-6
PII: S 0002-9947(1988)0920145-6
Article copyright: © Copyright 1988 American Mathematical Society