Infinite rank Butler groups

Authors:
Manfred Dugas and K. M. Rangaswamy

Journal:
Trans. Amer. Math. Soc. **305** (1988), 129-142

MSC:
Primary 20K20; Secondary 20K35, 20K40

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920150-X

MathSciNet review:
920150

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A torsion-free abelian group is said to be a Butler group if for all torsion groups . It is shown that Butler groups of finite rank satisfy what we call the torsion extension property (T.E.P.). A crucial result is that a countable Butler group satisfies the T.E.P. over a pure subgroup if and only if is decent in in the sense of Albrecht and Hill. A subclass of the Butler groups are the so-called -groups. An important question left open by Arnold, Bican, Salce, and others is whether every Butler group is a -group. We show under that this is indeed the case for Butler groups of rank . On the other hand it is shown that, under ZFC, it is undecidable whether a group for which for all countable torsion groups is indeed a -group.

**[1]**U. Albrecht and P. Hill,*Butler groups of infinite rank and Axiom*, Preprint.**[2]**D. Arnold,*Pure subgroups of finite rank completely decomposable groups*, Proc. Abelian Group Theory Conference, Oberwolfach, Lecture Notes in Math., vol. 874, Springer-Verlag, 1981, pp. 1-31. MR**645913 (83j:20060)****[3]**D. Arnold and C. Vinsonhaler,*Pure subgroups of finite rank completely decomposable groups*. II, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, pp. 97-143. MR**722614 (85g:20072)****[4]**D. Arnold,*Notes on Butler groups and balanced extensions*, Preprint. MR**850285 (87h:20101)****[5]**R. Baer,*Abelian groups without elements of finite order*, Duke Math J.**3**(1937), 68-122. MR**1545974****[6]**L. Bican,*Splitting in abelian groups*, Czechoslovak Math. J.**28**(1978), 356-364. MR**0480778 (58:928)****[7]**-,*Purely finitely generated groups*, Comment. Math. Univ. Carolin.**21**(1980), 209-218. MR**580678 (81i:20067)****[8]**L. Bican and L. Salce,*Infinite rank Butler groups*, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, pp. 171-189. MR**722617 (86c:20050)****[9]**L. Bican, L. Salcee, and J. Stepan,*A characterization of countable Butler groups*, Preprint. MR**818715 (87e:20100)****[10]**M. C. R. Butler,*A class of torsion-free abelian groups of finite rank*, Proc. London Math. Soc.**15**(1965), 680-698. MR**0218446 (36:1532)****[11]**P. Eklof,*Homological algebra and set theory*, Trans. Amer. Math. Soc.**227**(1977), 207-225. MR**0453520 (56:11782)****[12]**-,*Applications of logic to the problem of splitting abelian groups*, Logic Colloquium 76, North-Holland, 1977, pp. 287-299. MR**0540012 (58:27458)****[13]**L. Fuchs,*Infinite Abelian groups*, vols. I and II, Academic Press, New York, 1971 and 1973. MR**0255673 (41:333)****[14]**P. Griffith,*A solution to the splitting mixed group problem of Baer*, Trans. Amer. Math. Soc.**139**(1969), 261-269. MR**0238957 (39:317)****[15]**R. Hunter,*Balanced subgroups of abelian groups*, Trans. Amer. Math. Soc.**215**(1976), 81-98. MR**0507068 (58:22337)****[16]**R. Jensen,*The fine structure of the constructible hierarchy*, Ann. Math. Logic**4**(1972), 229-308. MR**0309729 (46:8834)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20K20,
20K35,
20K40

Retrieve articles in all journals with MSC: 20K20, 20K35, 20K40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920150-X

Keywords:
Torsion-free abelian groups,
Butler groups,
pure subgroups

Article copyright:
© Copyright 1988
American Mathematical Society