Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Coexistence theorems of steady states for predator-prey interacting systems

Author: Lige Li
Journal: Trans. Amer. Math. Soc. 305 (1988), 143-166
MSC: Primary 35J60; Secondary 92A15
MathSciNet review: 920151
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give necessary and sufficient conditions for the existence of positive solutions of steady states for predator-prey systems under Dirichlet boundary conditions on $ \Omega \Subset {{\mathbf{R}}^n}$. We show that the positive coexistence of predatorprey densities is completely determined by the "marginal density," the unique density of prey or predator while the other one is absent, i.e. the $ ({u_0},\,0)$ or $ (0,\,{\nu _0})$. More specifically, the situation of coexistence is determined by the spectral behavior of certain operators related to these marginal densities and is also completely determined by the stability properties of these marginal densities. The main results are Theorems 1 and 4.2.

References [Enhancements On Off] (What's this?)

  • [1] N. Alikakos, $ {L^p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868. MR 537465 (82g:35050)
  • [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709. MR 0415432 (54:3519)
  • [3] H. Berestyski, Le nombre de solutions de certains problèmes semi-lineaires elliptiques, J. Funct. Anal. 40 (1981), 1-29. MR 607588 (82k:35033)
  • [4] H. Berestyski and P. L. Lions, Some applications of the method of super and subsolutions, Lecture Notes in Math., vol. 782, Springer-Verlag, Berlin, 1980, pp. 16-42. MR 572249 (82c:35021)
  • [5] J. Blat and K. J. Brown, Bifurcation of steady-state solution in predator-prey and competition systems, Proc. Roy. Soc. Edinburgh 97A (1984), 21-34. MR 751174 (85k:92053)
  • [6] E. D. Conway, Diffusion and the predator-prey interaction: patterns in closed systems, Partial Differential Equations and Dynamical Systems (W. E. Fitzgibon, III, ed.), Pitman, London, 1984, pp. 85-133. MR 759745 (86e:92035)
  • [7] -, Diffusion and the predator-prey interaction: steady states with flux at the boundary, Contemporary Math., vol. 17, Amer. Math. Soc., Providence, R. I., 1983, pp. 215-234.
  • [8] E. D. Conway, R. Gardner and J. Smoller, Stability and bifurcation of steady state solutions for predator-prey equations, Adv. Appl. Math. 3 (1982), 288-334. MR 673245 (83m:35023)
  • [9] E. D. Conway and J. Smoller, Diffusion and the predator-prey interaction, SIAM J. Appl. Math. 33 (1977), 673-686. MR 0492877 (58:11934)
  • [10] M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161-181. MR 0341212 (49:5962)
  • [11] E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl. 91 (1983), 131-151. MR 688538 (84d:58020)
  • [12] -, On positive solutions of some partial differential equations, Trans. Amer. Math. Soc. 284 (1984), 729-743. MR 743741 (85i:35056)
  • [13] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Univ. Press, New York, 1985. MR 790497 (87c:47056)
  • [14] P. Korman and A. Leung, A general monotone scheme for elliptic system with applications to ecological models, Proc. Roy. Soc. Edinburgh 102A (1986), 315-325. MR 852364 (87m:35008)
  • [15] A. Leung, Monotone schemes for semilinear elliptic systems realted to ecology, Math. Meth. Appl. Sci. 4 (1982), 272-285. MR 659042 (83h:35048)
  • [16] P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium states for generalized Volterra-Lotka systems, SIAM J. Appl. Math. 37 (1979), 648-663. MR 549146 (81b:92008)
  • [17] C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl. 87 (1982), 165-198. MR 653613 (83i:35094)
  • [18] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, 1983. MR 688146 (84d:35002)
  • [19] J. Smoller, A. Tromba and A. Wasserman, Nondegenerate solutions of boundary-value problems, Nonlinear Anal. 4 (1980), 207-215. MR 563804 (81b:34009)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 92A15

Retrieve articles in all journals with MSC: 35J60, 92A15

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society