Counting semiregular permutations which are products of a full cycle and an involution

Author:
D. M. Jackson

Journal:
Trans. Amer. Math. Soc. **305** (1988), 317-331

MSC:
Primary 05A15; Secondary 05A05, 20C30

MathSciNet review:
920161

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Character theoretic methods and the group algebra of the symmetric group are used to derive properties of the number of permutations, with only -cycles, for an arbitrary but fixed , which are expressible as the product of a full cycle and a fixed point free involution. This problem has application to single face embeddings of -regular graphs on surfaces of given genus.

**[1]**Eiichi Bannai and Tatsuro Ito,*Algebraic combinatorics. I*, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. Association schemes. MR**882540****[2]**D. Bessis, C. Itzykson, and J. B. Zuber,*Quantum field theory techniques in graphical enumeration*, Adv. in Appl. Math.**1**(1980), no. 2, 109–157. MR**603127**, 10.1016/0196-8858(80)90008-1**[3]**Persi Diaconis and Mehrdad Shahshahani,*Generating a random permutation with random transpositions*, Z. Wahrsch. Verw. Gebiete**57**(1981), no. 2, 159–179. MR**626813**, 10.1007/BF00535487**[4]**D. M. Jackson,*Counting cycles in permutations by group characters, with an application to a topological problem*, Trans. Amer. Math. Soc.**299**(1987), no. 2, 785–801. MR**869231**, 10.1090/S0002-9947-1987-0869231-9**[5]**Antonio Machì,*The Riemann-Hurwitz formula for the centralizer of a pair of permutations*, Arch. Math. (Basel)**42**(1984), no. 3, 280–288. MR**751506**, 10.1007/BF01191186**[6]**Private communication.**[7]**Earl D. Rainville,*Special functions*, The Macmillan Co., New York, 1960. MR**0107725****[8]**Oscar Rothaus and John G. Thompson,*A combinatorial problem in the symmetric group*, Pacific J. Math.**18**(1966), 175–178. MR**0195934****[9]**Lucy Joan Slater,*Generalized hypergeometric functions*, Cambridge University Press, Cambridge, 1966. MR**0201688****[10]**Richard P. Stanley,*Factorization of permutations into 𝑛-cycles*, Discrete Math.**37**(1981), no. 2-3, 255–262. MR**676430**, 10.1016/0012-365X(81)90224-7**[11]**J. G. Thompson,*Rational functions associated to presentations of finite groups*, J. Algebra**71**(1981), no. 2, 481–489. MR**630609**, 10.1016/0021-8693(81)90187-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05A15,
05A05,
20C30

Retrieve articles in all journals with MSC: 05A15, 05A05, 20C30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920161-4

Article copyright:
© Copyright 1988
American Mathematical Society