Counting semiregular permutations which are products of a full cycle and an involution

Author:
D. M. Jackson

Journal:
Trans. Amer. Math. Soc. **305** (1988), 317-331

MSC:
Primary 05A15; Secondary 05A05, 20C30

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920161-4

MathSciNet review:
920161

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Character theoretic methods and the group algebra of the symmetric group are used to derive properties of the number of permutations, with only -cycles, for an arbitrary but fixed , which are expressible as the product of a full cycle and a fixed point free involution. This problem has application to single face embeddings of -regular graphs on surfaces of given genus.

**[1]**E. Bannai and T. Ito,*Algebraic combinatorics*. I:*Association schemes*, Benjamin/Cummings, Menlo Park, California, 1984. MR**882540 (87m:05001)****[2]**D. Bessis, C. Itzykson and J. B. Zuber,*Quantum field theory techniques in graphical enumeration*, Adv. Appl. Math.**1**(1980), 109-157. MR**603127 (83j:81067)****[3]**P. Diaconis and M. Shahshahani,*Generating a random permutation with random transpositions*, Z. Wahrsch. Geb.**57**(1981), 159-179. MR**626813 (82h:60024)****[4]**D. M. Jackson,*Counting cycles in permutations by group characters, with an application to a topological problem*, Trans. Amer. Math. Soc.**299**(1987), 785-801. MR**869231 (88c:05011)****[5]**A. Machi,*The Riemann-Hurwitz formula for the centralizer of a pair of permutations*, Arch. Math.**42**(1984), 280-288. MR**751506 (86a:20003)****[6]**Private communication.**[7]**E. D. Rainville,*Special functions*, Macmillan, New York, 1960. MR**0107725 (21:6447)****[8]**O. Rothaus and J. G. Thompson,*A combinatorial problem in the symmetric group*, Pacific J. Math.**18**(1966), 175-178. MR**0195934 (33:4130)****[9]**L. J. Slater,*Generalized hypergeometric functions*, Cambridge Univ. Press, Cambridge, 1966. MR**0201688 (34:1570)****[10]**R. P. Stanley,*Factorization of permutations into*-*cycles*, Discrete Math.**37**(1981), 255-262. MR**676430 (84g:05014)****[11]**J. G. Thompson,*Rational functions associated to presentations of finite groups*, J. Algebra**71**(1981), 481-489. MR**630609 (83a:20048)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05A15,
05A05,
20C30

Retrieve articles in all journals with MSC: 05A15, 05A05, 20C30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920161-4

Article copyright:
© Copyright 1988
American Mathematical Society