OPERATOR THEORETICAL REALIZATION
OF SOME GEOMETRIC NOTIONS

LIN QING

ABSTRACT. This paper studies the realization of certain geometric constructions in Cowen-Douglas operator class. Through this realization, some operator theoretical phenomena are easily seen from the corresponding geometric phenomena. In particular, we use this technique to solve the first-order equivalence problem and introduce a new operation among certain operators.

The nature of Cowen-Douglas theory is to identify operators of a certain type with certain geometric objects.

Based on this idea, we work on certain geometric constructions, holomorphic curves in Gr(n, C^{2n}) (the Grassmannian of n-dim subspaces of C^{2n}) in Part 1 and tensor product of vector bundles in Part 2, and seek their operator theoretical realization.

Our realization of holomorphic curves in Gr(n, C^{2n}) will preserve important relations, and can be informally viewed as the imbedding of holomorphic curves in Gr(n, C^{2n}) into the Cowen-Douglas operator class B_n(\Omega). Using this realization, we solve the first-order equivalence problem by explicitly exhibiting two operators T_1, T_2 \in B_n(D) such that T_1 is not unitarily equivalent to T_2 but T_1 and T_2 have identical curvatures.

The realization of tensor product of vector bundles gives a natural operation among Cowen-Douglas operators. Using this operation, certain operator theoretical phenomena have been clarified naturally. E.g., for certain g \in H^\infty, the corresponding Bergman operator B^*_g is the “square” of the corresponding Toeplitz operator T^*_g.

This paper is part of the author’s Ph.D. dissertation. I dedicate this paper to my thesis advisor Michael J. Cowen.

Also, I would like to thank L. A. Coburn, R. E. Curto and W. L. Paschke for the various help I received during the preparation of this paper.

PART 1. OPERATOR THEORETICAL REALIZATION OF HOLOMORPHIC CURVES IN Gr(n, C^{2n})

1.1. Introduction. We will state only the main point of Cowen-Douglas theory here, and refer the reader to [C-D, 1] for further details.

If H is a separable Hilbert space, and \Omega is an open connected subset of C, then the operator class \text{B}_n(\Omega) is by definition

\[\{ T \in \mathcal{L}(H) : \begin{array}{l}
1. \quad \text{range}(T-w) = H, \text{ if } w \in \Omega; \\
2. \quad \dim \ker(T-w) = n, \text{ if } w \in \Omega; \\
3. \quad \bigvee_{w \in \Omega} \ker(T-w) = H \text{ (spanning property)} \} \].

Received by the editors November 18, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B99; Secondary 47B35.
We call the operators in $B_n(\Omega)$ Cowen-Douglas operators.

The fundamental relation between $T \in B_n(\Omega)$ and the associated n-dim holomorphic Hermitian vector bundle over Ω defined by

$$E_T : \ker(T - w)$$

is the following identification:

THEOREM A [C-D, 1]. Two operators T and \tilde{T} in $B_n(\Omega)$ are unitarily equivalent $\iff E_T$ and $E_{\tilde{T}}$ are equivalent as holomorphic Hermitian vector bundles. We write $E_T \cong E_{\tilde{T}}$.

On the other hand, the Calabi Rigidity Theorem gives a perfect identification of a holomorphic curve (with spanning property) $\gamma : \Omega \to \Gr(n, \mathbb{C}^{2n})$ with its pull-back of the universal subbundle (i.e. $\gamma^*(\mathcal{S}(n, \mathbb{C}^{2n}))$).

Our philosophy is they are related through their identified vector bundles.

DEFINITION 1.1.1. Let $F = (f_{ij})_{i,j}$ be a $n \times n$ matrix with H^∞ entries and let $g \in H^\infty$; we define the operator $S(g, F)$ by

$$S(g, F) \overset{\text{def}}{=} (T_g^*\otimes I_n \oplus T_g^*\otimes I_n)|_{\text{Graph}(T_g^*)}$$

where T_g^* and $T_g^*\otimes I_n$ are matrix Toeplitz operators acting on row vectors in $H^2 \otimes \mathbb{C}^n$.

It turns out that $S(g, F)$ is the right operator realization of the holomorphic curve, $\text{span}(f^*) : \mathcal{D} \to \Gr(n, \mathbb{C}^{2n})$, where \mathcal{D} is the open unit disk.

The geometric nature of $S(g, F)$ will be discussed in §1.2 and its operator theoretical nature will be discussed in §1.4.

(In this paper, the geometric part of a Cowen-Douglas operator or of a holomorphic curve means the geometric part of its corresponding vector bundle.)

1.2. Geometric aspects of this realization. In this section, we will show that for certain $g \in H^\infty$, the associated operator $S(g, F)$ belongs to $B_n(\Omega)$, and that through this realization, i.e. from the pull-back of the universal subbundle by $\text{span}(f^*) : \mathcal{D} \to \Gr(n, \mathbb{C}^{2n})$ to $E_{S(g, F)}$, the important geometric relations are preserved.

In order to do this, we need to recall the definitions of some geometric invariants.

Let E, \tilde{E} denote two n-dim Hermitian holomorphic vector bundles over an open connected set $\Omega \subset \mathbb{C}$. Let D_E denote the canonical connection of E and $D^2_E = K_E \, dz \, d\bar{z}$ be its curvature tensor. We sometimes write K_E as K when no confusion arises.

It is well known that K is a C^∞ selfadjoint bundle map of E to E.

DEFINITION 1.2.1. If $\phi : E \to E$ is a C^∞ bundle map, then define ϕ_x and $\phi_{\bar{z}}$ by

$$[D_E, \phi] = D_E \phi - \phi D_E = \phi_x dz + \phi_{\bar{z}} d\bar{z};$$

$[D_E, \phi]$ is a C^∞ bundle map of E to $E \otimes \mathcal{E}'(\Omega)$, where $\mathcal{E}'(\Omega)$ denotes the set of C^∞ 1-forms over Ω.

\(^1\) A holomorphic curve γ in $\Gr(n, \mathbb{C}^{2n})$ has the spanning property if $\sum_{z \in \Omega} \gamma(z) = \mathbb{C}^{2n}$. In this paper, we only consider holomorphic curves with this property.
Here ϕ_x, ϕ_z are clearly bundle maps of $E \to E$; they are called the first covariant derivatives for ϕ.

Taking the first covariant derivatives of ϕ_x, ϕ_z and taking covariant derivatives of their covariant derivatives, etc., we get higher order covariant derivatives of ϕ.

For details see [C-D, 2].

** Remark.** Relative to any C^∞ frame S of E, write $\Gamma(S)\, dz + \tilde{\Gamma}(S)\, d\bar{z}$ for the connection 1-form matrix of D_E and $\phi(S)$ for the matrix representation of ϕ relative to S. Then

$$\phi_x(S) = [\Gamma(S), \phi(S)] + \partial \phi(S) / \partial z, \quad \phi_z(S) = [\tilde{\Gamma}(S), \phi(S)] + \partial \phi(S) / \partial \bar{z}.$$

The covariant derivatives of the curvature bundle map K_E give the important geometric invariants of E.

** Definition 1.2.2.** Let E, \tilde{E} be n-dim Hermitian holomorphic vector bundles and let k be a positive integer. We say E is equivalent to order k with \tilde{E}, if for each $z \in \Omega$, there is an isometry $\phi_z : E_z \to \tilde{E}_z$ such that $\phi_z \circ \chi = \tilde{\chi} \circ \phi_z$, where χ is a covariant derivative of K with total order $\leq k$, but bi-order $(p, q) \neq (0, k)$ or $(k, 0)$, and $\tilde{\chi}$ is the corresponding covariant derivative for \tilde{K}. (We shall say χ has total order $\leq k$ and satisfies the bi-order condition.)

For example, E is equivalent to order 1 with $\tilde{E} \Leftrightarrow$ for each $z \in \Omega$, there is an isometry $\phi_z : E_z \to \tilde{E}_z$ such that $\phi_z \circ K = \tilde{K} \circ \phi_z$. (We say E and \tilde{E} have identical curvatures.)

** Theorem B [C-D, 2].** If $\dim E = \dim \tilde{E} = n$, then $E \cong \tilde{E} \Leftrightarrow E$ and \tilde{E} are equivalent to order n.

We list two simple facts related to Definition 1.2.2:

1. If $\tilde{\Omega}, \Omega \subset \mathbb{C}$, $g : \tilde{\Omega} \to \Omega$ is an analytic function, then E_1 and E_2 are equivalent to order k, so are $g_*(E_1)$ and $g_*(E_2)$.

2. If E_1 and \tilde{E}_1, E_2 and \tilde{E}_2 are both equivalent to order k respectively, so are $E_1 \otimes E_2$ and $\tilde{E}_1 \otimes \tilde{E}_2$.

For an explanation of this, see [L].

If T_1 and T_2 are in $B_\mu(\Omega)$, the relation of E_{T_1} and E_{T_2} being equivalent to order k is directly reflected in the relation of T_1 and T_2.

** Theorem C [C-D, 1].** If $T_1, T_2 \in B_\mu(\Omega)$, then E_{T_1} and E_{T_2} are equivalent to order $k \Leftrightarrow T_1|_{\ker(T_w^{k+1})}$ and $T_2|_{\ker(T_w^{k+1})}$ are unitarily equivalent for each $w \in \Omega$.

In this situation, we will say T_1 and T_2 are equivalent to order k.

** Notation.** We will use $\tilde{\Omega}$ to denote the conjugate of a subset Ω of \mathbb{C} and $\text{bd}(D)$ to denote the boundary of D.

The following lemma is a characterization of $T_g^* \in B_1(\Omega)$ for $g \in H^\infty$.

** Lemma 1.2.1.** If $g \in H^\infty$, Ω connected open in \mathbb{C}, then $T_g^* \in B_1(\Omega) \Leftrightarrow$ the map $g : g^{-1}(\tilde{\Omega}) \to \tilde{\Omega}$ is onto and is a conformal equivalence.

** Proof.** Recall

$$(*): \quad (T_g^* - \bar{g}(z)) k_z = 0,$$

where $z \in D$ and $k_z(\zeta) = 1/(1 - z \zeta)$ for $\zeta \in D$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
"⇒" The mapping \(g: g^{-1}(\tilde{\Omega}) \to \tilde{\Omega} \) has to be injective, because \(z_1 \neq z_2 \) in \(\mathcal{D} \) implies \(k_{z_1} \) and \(k_{z_2} \) are linearly independent.

The fact that \(g = g^{-1}(\tilde{\Omega}) \to \tilde{\Omega} \) is surjective follows from:

1. \(\tilde{\Omega} \subset \sigma(T_g^*) = \sigma(T_g) = \text{clos}(g(\mathcal{D})) \);
2. \(\tilde{\Omega} \cap \sigma_e(T_g) = \tilde{\Omega} \cap \sigma_e(T_g^*) \) is empty;
3. \(\sigma_e(T_g) \supset \text{bd}(g(\mathcal{D})) \). (See [D].)

"⇐" Step 1. Fix any \(w = g(z_0) \in \tilde{\Omega} \), then \(g(z) - w = (z - z_0)h(z) \).

We claim \(h \) is invertible in \(H^\infty \).

It is trivial to see \(h \in H^\infty \) and \(h \) is nowhere zero in \(\mathcal{D} \).

The invertibility of \(h \) in \(H^\infty \) follows from observing that for any \(z_n \in \mathcal{D} \), with \(g(z_n) \to w \) (assume \(g(z_n) \in \tilde{\Omega} \)), we have \(g^{-1}(g(z_n)) = z_n - z_0 \) (because \(g: g^{-1}(\tilde{\Omega}) \to \tilde{\Omega} \) is a conformal equivalence).

Step 2. Let \(w = g(z_0) \in \tilde{\Omega} \) as above. Notice that \(\ker(T_g - w) = 0 \).

We claim \(\text{range}(T_g - w) = \{ f \in H^2 : f(z_0) = 0 \} \).

This follows from two facts:

1. \([(T_g - w)(f)](z) = (g(z) - w)f(z) = (z - z_0)h(z)f(z) \);
2. if \(f(z) = (z - z_0)l(z) \) with \(l \in H^2 \), then

\[
[(z - z_0)h(z)](l(z)/h(z)) = [(T_g - w)(l/h)](z).
\]

Thus \(f - (f(z_0)/k_{z_0}(z_0))k_{z_0} \in \text{range}(T_g - w) \). Thus \(T_g - w \) has closed range and using formula (\(\ast \)), we have

\[
\text{span}(k_{z_0}) \oplus \text{range}(T_g - w) = H^2.
\]

So \(\dim(\ker(T_g^* - \tilde{w})) = \dim[\text{coker}(T_g - w)] = 1 \), and \(T_g^* - \tilde{w} \) is Fredholm of index 1.

This shows \(T_g^* \in B_1(\Omega) \).

From now on, \(E_F \) will denote the holomorphic Hermitian vector bundle

\[
\text{span}
\begin{pmatrix}
I \\
F(z)
\end{pmatrix},
\]

where \(F = (f_{ij})_{i,j} \) is an \(n \times n \) matrix of analytic functions on \(\Omega \subset \mathbb{C} ; (I_{F(z)}) \) is always viewed as a collection of column vectors in \(\mathbb{C}^{2n} \).

THEOREM 1.2.2. If \(g \in H^\infty \) and \(T_g^* \in B_1(\Omega) \), then \(S(g, F) \in B_n(\Omega) \) for any \(F = \{f_{ij}\}_{i,j} \) with each \(f_{ij} \in H^\infty \). Moreover

1. \(E_{S(g,F)} \cong E_{T_g^*} \otimes E_f \), where \(f(z) = F(g^{-1}(z)) \);
2. \(E_F \) and \(E_G \) are equivalent to order \(k \) if \(S(g,F) \) and \(S(g,G) \) are equivalent to order \(k \) (where \(G \) has entries in \(H^\infty \)).

PROOF. It is trivial to see that \(S(g,F) \in B_n(\Omega) \), since \(B_n(\Omega) \) is closed under similarity and \(S(g,F) \sim T_g^*I_n \) (by the graph mapping \(x \mapsto (x,T_g^*x) \)). We go directly to 1 and 2.
1. Observe that \(k_{g^{-1}(z)} \) is a holomorphic frame of \(E_{T_g}(k_w(\zeta) = 1/(1 - \zeta w)) \), that \((k_{g^{-1}(z)} \otimes I_n) \oplus \mathcal{F}(z)(k_{g^{-1}(z)} \otimes I_n) \) is a holomorphic frame of \(E_S(g,F) \), and that \((I_{\mathcal{F}(z)}) \) is a holomorphic frame of \(E_T \). Therefore

\[
(k_{g^{-1}(z)} \otimes I_n) \oplus \mathcal{F}(z)(k_{g^{-1}(z)} \otimes I_n) \rightarrow k_{g^{-1}(z)} \otimes (I_{\mathcal{F}(z)})
\]

is the desired holomorphic isometric bundle map. (In the expression above, both sides are thought of as collections of \(n \)-vectors.)

2. Using the fact (2) following Definition 1.2.2, we see \(E_T \) is equivalent to order \(k \) with \(E_g \equiv E_S(g,F) \) and \(E_S(g,G) \) are equivalent to order \(k \), where \(g(z) = G(g^{-1}(z)) \).

Once we prove “\(E_F \) and \(E_G \) are equivalent to order \(k \) \(E_T \) and \(E_g \) are equivalent to order \(k \) for \(g(z) \equiv z \),” then the rest follows directly from fact (1).

NOTE. Over the holomorphic frame \((F(z)) \), the connection 1-form matrix of \(E_F \) is \(\{(I + F^*(z)F(z))^{-1}F^*(z)F'(z)\} \, dz \) and so the matrix of its curvature bundle map \(K_{E_F} \) is

\[
-(I + F^*(z)F(z))^{-1}(F'(z))^*(I + F(z)F^*(z))^{-1}F'(z)
\]

(see [C-D, 1]).

So by the remark following Definition 1.2.1, over the holomorphic frame \((F(z)) \) the matrix representations of the covariant derivatives of \(K_{E_F} \) on \(E_F \) are all noncommutative polynomials in \(F^{(i)}(z), F^G(z) \) and \((I + F^*(z)F(z))^{-1}, (I + F(z)F^*(z))^{-1} \), \(i,j \geq 0 \). Also such polynomials are canonical in the sense that they are independent of the choice of \(F \). So for a covariant derivative of \(E_F \), the conjugate of its matrix (relative to the frame \((\mathcal{F}) \)) at \(\bar{z} \) is exactly the corresponding one for \(E_T \) (relative to the frame \((\mathcal{F}) \)) at \(z \).

From Definition 1.2.2, the rest of the proof is quite straightforward. □

Notice that \(E_F \) is the pull-back of the universal bundle under the holomorphic mapping \(z \rightarrow \text{span} \left(F(z) \right) \in G(n, \mathbb{C}^{2n}) \); in view of the Calabi Rigidity Theorem, Theorem 1.2.2 above says the geometry of these realization operators mirrors the geometry of holomorphic curves in \(G(n, \mathbb{C}^{2n}) \).

COROLLARY 1.2.3. If there is a \(z_0 \) in \(D \) (unit disk) with \(F(z_0) = G(z_0) = 0 \), then \(S(g,F) \equiv S(g,G) \) \(\Rightarrow \) there are constant unitary matrices \(V, W \) such that \(VF(z)W \equiv G(z) \) on \(D \).

PROOF. From Theorems A, B and 1.2.2, this corollary really says that \(E_F \equiv E_G \) \(\Rightarrow \) \(\exists \) constant unitary matrices \(V, W \) such that \(VF(z)W \equiv G(z) \).

By the Calabi Rigidity Theorem, \(E_F \equiv E_G \) \(\Rightarrow \) \(\exists \) constant \(2n \times 2n \) unitary matrix

\[
\mathcal{U} = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix},
\]

where each \(U_j \) is an \(n \times n \) matrix, such that

\[
\begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix} \begin{pmatrix} I \\ F(z) \end{pmatrix} = \begin{pmatrix} I \\ G(z) \end{pmatrix} A(z),
\]

where \(A(z) \) is an \(n \times n \) invertible matrix for each \(z \in D \).

“ \(\Rightarrow \)” We have the identity

\[
(I,0)\mathcal{U}^*\mathcal{U} \begin{pmatrix} I \\ F(z) \end{pmatrix} = A^*(z_0)(I,0) \begin{pmatrix} I \\ G(z) \end{pmatrix} A(z),
\]
if \(z \in \mathcal{D} \) which implies \(I \equiv A^*(z_0)A(z) \) and therefore \(A(z) \equiv A(z_0) \) is unitary.

But \(U_1 + U_2 F(z) \equiv A(z_0) \) and \(F(z_0) = 0 \) implies \(A(z_0) = U_1 \) is unitary, hence \(U_2 = U_3 = 0 \) and \(U_4 \) is unitary.

So \(U_4 F(z) \equiv G(z) U_1 \) in \(\mathcal{D} \).

\[
\left(\begin{array}{c c}
I \\
F(z)
\end{array} \right) \equiv \left(\begin{array}{c c}
I \\
G(z)
\end{array} \right) W^* \text{ on } \mathcal{D} \text{ gives } E_F \cong E_G. \quad \square
\]

1.3. The first-order equivalence problem. We seek two operators \(T_1, T_2 \in B_n(\Omega) \) such that \(T_1 \not\sim T_2 \) but \(T_1|_{\ker(T_1 - w)^2} \cong T_2|_{\ker(T_2 - w)^2} \) for each \(w \in \Omega \).

Using Theorem C and Theorem 1.2.2, this problem is reduced to a geometric problem on \(\text{Gr}(n, \mathbb{C}^{2n}) \), namely “Find two holomorphic curves \(f_1, f_2 \) in \(\text{Gr}(n, \mathbb{C}^{2n}) \) such that \(f_1^*(S(n, \mathbb{C}^{2n})) \) and \(f_2^*(S(n, \mathbb{C}^{2n})) \) have the same curvature, but are inequivalent.” Recall first that the Calabi Rigidity Theorem says \(f_1^*(S(n, \mathbb{C}^{2n})) = f_2^*(S(n, \mathbb{C}^{2n})) \) if \(f_1 \) and \(f_2 \) are identical up to a unitary action of \(\mathbb{C}^{2n} \).

Second, fix an orthonormal basis of \(\mathbb{C}^{2n} \), say \(e_1, \ldots, e_{2n} \); then \((e_1, \ldots, e_{2n}) X, (e_1, \ldots, e_{2n}) Y \rightarrow Y^T X \) is a nondegenerated bilinear form. It is not hard to see that it induces an automorphism of \(\text{Gr}(n, \mathbb{C}^{2n}) \). Call this kind of automorphism a correlation of \(\text{Gr}(n, \mathbb{C}^{2n}) \).

Recall the Plücker imbedding of \(\text{Gr}(n, \mathbb{C}^{2n}) \rightarrow \mathbb{P}(\wedge^n \mathbb{C}^{2n}) \) is the mapping \(\text{span}\{Z_1, \ldots, Z_n\} \rightarrow \text{span}\{Z_1 \wedge Z_2 \wedge \cdots \wedge Z_n\} \).

If \(\mathbb{P}(\wedge^n \mathbb{C}^{2n}) \) carries the Fubini-Study metric, then the canonical Kähler structure of \(\text{Gr}(n, \mathbb{C}^{2n}) \) is induced by this holomorphic imbedding. (See [Chern].)

With this metric on \(\text{Gr}(n, \mathbb{C}^{2n}) \), every correlation of \(\text{Gr}(n, \mathbb{C}^{2n}) \) is an isometry and is in fact the unique nontrivial isometric automorphism of \(\text{Gr}(n, \mathbb{C}^{2n}) \) up to the action of \(U(2n) \) on \(\text{Gr}(n, \mathbb{C}^{2n}) \). (See [Chow], [Cowen].)

Fix a correlation composed with a unitary \(\left(\begin{array}{c c} 0 & I \end{array} \right) \) action:

\[
\phi: \left(\begin{array}{c c}
I \\
F
\end{array} \right) \rightarrow \left(\begin{array}{c c}
-I^T \\
F^T
\end{array} \right) \rightarrow \left(\begin{array}{c c}
0 & I \\
-I^T & I
\end{array} \right) \rightarrow \left(\begin{array}{c c}
-I^T \\
F^T
\end{array} \right),
\]

where \(F \) is an \(n \times n \) matrix, \(I \) is the identity \(n \times n \) matrix and \(F^T \) is the transpose of \(F \). We shall show that for any holomorphic curve \(f: \Omega \rightarrow \text{Gr}(n, \mathbb{C}^{2n}) \), \(f^*(S(n, \mathbb{C}^{2n})) \) and \((\phi \circ f)^*(S(n, \mathbb{C}^{2n})) \) have the same curvature, but there is an \(f \) such that we cannot get \(\phi \circ f \) by any unitary action on \(f \).

LEMMA 1.3.1. The vector bundles \(E_1, E_2 \) are equivalent to order one \(\Leftrightarrow \) for any \(C^\infty \) frame \(S_j \) on \(E_j \) \((j = 1, 2) \), \(K_1(S_1) \) is similar to \(K_2(S_2) \) pointwise.

PROOF. Notice that the matrix representation of curvature changes by similarity under change of frame and the curvature of the canonical connection is selfadjoint.

So \(E_1 \) is equivalent to order one with \(E_2 \Leftrightarrow \) the eigenvalues of \(K_1 \) and \(K_2 \) are the same. \(\square \)

In the following two lemmas, we write \(F = (f_{ij})_{i,j}, \tilde{F} = (\tilde{f}_{ij})_{i,j}, \) where all \(f_{ij}, \tilde{f}_{ij} \) are analytic functions on \(\Omega \subset \mathbb{C} \).

LEMMA 1.3.2. \(E_F \) and \(E_{F^T} \) are equivalent to order one.

PROOF. Over the holomorphic frame \(\left[\begin{array}{c c}
F^I(x) \\
F^T(x)
\end{array} \right] \), \(K_E \) has matrix

\[
\left(\begin{array}{c c}
I + F^*F \end{array} \right)^{-1} \left(\begin{array}{c c}
\left(F' \right)^* \\
(I + FF^*)^{-1} F'
\end{array} \right).
\]
Using the elementary fact if A, B are invertible matrices, then $AB \sim BA$ and $A \sim A^T$, it is obvious that (**) is similar to

$$-\{F'(I + F^*F)^{-1}(F')^*(I + FF^*)\}^T$$
$$= -(I + (F^T)^*F^T)^{-1}[(F^T)']^*(I + F^T(F^T)^*)^{-1}(F^T)' \quad \square$$

Lemma 1.3.3. Fix $z_0 \in \Omega$ and suppose that $F(z_0) = \tilde{F}(z_0) = 0$, and

$$F'(z_0) = \tilde{F}'(z_0) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \quad \text{with } |\lambda_i| \neq |\lambda_j| \quad \text{(if } i \neq j)\text{.}$$

Then $E_F \cong E_{\tilde{F}}$ implies $|f_{ij}(z)| \equiv |\tilde{f}_{ij}(z)|$ for all i, j and $z \in \Omega$.

Proof. By Corollary 1.2.3,

$$E_F \cong E_{\tilde{F}} \iff \exists \text{ constant unitary } n \times n \text{ matrices } V, W \text{ such that } V F(z) W \cong \tilde{F}(z) \text{ on } \Omega$$
$$V F'(z_0) W = \tilde{F}'(z_0)$$
$$\Rightarrow W^* \begin{pmatrix} |\lambda_1|^2 & |\lambda_2|^2 \\ & \ddots \\ & & |\lambda_n|^2 \end{pmatrix} W$$
$$= \begin{pmatrix} |\lambda_1|^2 & |\lambda_2|^2 \\ & \ddots \\ & & |\lambda_n|^2 \end{pmatrix}$$
$$V^* \begin{pmatrix} |\lambda_1|^2 & |\lambda_2|^2 \\ & \ddots \\ & & |\lambda_n|^2 \end{pmatrix} V$$
$$\Rightarrow W, V \text{ are both diagonal.} \quad \square$$

Corollary 1.3.4. Take any $F = (f_{ij})_{i,j}$ with

1. $f_{ij} \in H^\infty$ and $f_{ij}(0) = 0$ for all i, j;
2. $f''(z_0) = (\ldots, \frac{\partial^2 f_{ij}}{\partial z_i \partial z_j}(z_0))$ for some i, j.

Then $E_F \not\cong E_{F^T}$.

We can now summarize the solution of the first-order equivalence problem as follows.
THEOREM 1.3.5. If \(n > 1 \), and \(F \) is as in Corollary 1.3.4, then \(S(z,F) \), \(S(z,F^T) \in B_n(D) \), \(S(z,F) \) and \(S(z,F^T) \) are equivalent to order one, but they are not unitarily equivalent.

1.4. The operator theoretical aspect of this realization. We begin with a powerful theorem of Brown-Douglas-Fillmore [BDF].

THEOREM D [BDF]. Two essentially normal operators \(T_1 \) and \(T_2 \) are unitarily equivalent modulo compact operators \(\Leftrightarrow \sigma_e(T_1) = \sigma_e(T_2) = X \) and \(\text{ind}(T_1 - \lambda) = \text{ind}(T_2 - \lambda) \) whenever \(\lambda \in \mathbb{C} - X \).

Notice that similarity of the operators \(T_1 \) and \(T_2 \) already implies the conditions on the right of Theorem D.

LEMMA 1.4.1. If \(T, S \) are two bounded linear operators on \(H \) such that \(T \) is essentially normal and \([T, S] = 0 \), then

1. Graph(\(S \)) is invariant under \(T \oplus T^* \);
2. \(T \oplus T|_{\text{Graph}(S)} = T_s \) is unitarily equivalent to a compact perturbation of \(T \).

PROOF. 1 is trivial. For 2, note \(T_s \sim T \) via the map \(\phi: x \rightarrow (x, Sx) \). In view of [BDF], it suffices to show \([T_s, T_s^*] \) is compact.

Let \(P \) be the orthogonal projection of \(H \oplus H \) onto Graph(\(S \)), then if \(x \in H \),

\[
T_s^*(\phi(x)) = P(T^*x \oplus T^*Sx) = \phi(T^*x) + P(0 \oplus [T^*, S]|x).
\]

Define \(K: \text{Graph}(S) \rightarrow \text{Graph}(S) \) by \(K(\phi(x)) = P(0 \oplus [T^*, S]|x) \).

Note that by Fuglede's theorem in the Calkin algebra (i.e., \(ts = st, t^*t = tt^* \Rightarrow t^*s = st^* \)) \([T^*, S]| \) is compact, thus \(K \) is a compact operator. Then

\[
T_s^*(\phi(x)) = \phi(T^*x) + K(\phi(x)),
\]

and

\[
T_s \circ T_s^*(\phi(x)) = \phi(T \circ T^*x) + T_s \circ K(\phi(x)),
\]

\[
T_s^* \circ T_s(\phi(x)) = T_s^*(\phi(Tx)) = \phi(T^* \circ Tx) + K \circ T_s(\phi(x)).
\]

Thus \([T_s, T_s^*] = \phi \circ ([T, T^*]) \circ \phi^{-1} + [T_s, K] \). \(\square \)

THEOREM 1.4.2. If \(g \in H^\infty \cap QC \), then \(S(g,F) \cong (T_{g \otimes I_n} + K) \sim T_{g \otimes I_n} \), where \(K \) is a compact operator

\[
QC = (H^\infty + C(S')) \cap (H^\infty + C(S')).
\]

PROOF. Since \(g \) is quasi-continuous, \(T_{g \otimes I_n} \) is essentially normal (see [D]); the lemma above can then be applied. \(\square \)

We know very little about the compact operator \(K \) in Theorem 1.4.2. One situation in which we do have some information is that of the following theorem, here stated without proof.

THEOREM 1.4.3. If \(0 < |a| < 1 \), then \(S(z, (z - a)/(1 - za)) \cong U_+^* + K \), where \(U_+ \) is the unilateral shift on the orthonormal basis \(\{e_n\}_{n=0}^\infty \) and \(K(e_j) = 0, j \geq 2, K(e_0) = a e_0, K(e_1) = b e_0 \) with \(2|1 + b|^2 + |a|^2 = 1 \).
PART 2. OPERATOR THEORETICAL REALIZATION OF TENSOR PRODUCT OF VECTOR BUNDLES

We will use the definitions and notations introduced in Part 1. Besides, we shall use $\alpha = (\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(n)})$ to denote an ordered n-tuple of vectors in the Hilbert space H (i.e. $\alpha^{(j)} \in H$), and define $\alpha^* \beta = (\langle \beta^{(1)}, \alpha^{(i)} \rangle)_{i,j}$, the $n \times n$ Gramian matrix of α and β, and $||\alpha||^2 \overset{\text{def}}{=} \text{tr}(\alpha^* \alpha) = \sum_{i=1}^{n} ||\alpha^{(i)}||^2$. We shall say $\alpha \perp \beta$, if $\alpha^* \beta = 0$.

Moreover, let $\alpha_j = (\alpha^{(1)}_j, \alpha^{(2)}_j, \ldots, \alpha^{(n)}_j)$ be a sequence of ordered n-tuple vectors, $j = 1, 2, \ldots$. We shall say $\{\alpha^{(k)}_j\}_{j=1}^{\infty}$ is a linearly independent set, if $\{\alpha^{(k)}_j : 1 \leq k \leq n, j = 1, 2, \ldots\}$ is a linearly independent set in H. We write

$$\text{span}\{\alpha_j\}_{j=1}^{\infty} \overset{\text{def}}{=} \text{span}\{\alpha^{(k)}_j : 1 \leq k \leq n, j = 1, 2, \ldots\}.$$

Notice that if γ_1 is an ordered m-tuple vector and γ_2 is an ordered n-tuple vector, then $\gamma_1 \otimes \gamma_2$ is an ordered mn-tuple vector.

2.1. The operator realization of tensor product of vector bundles.

Theorem A in Part 1 says, for $T \in B_n(\Omega)$, T and E_T are identified. Now, it is natural to ask: if $T_1 \in B_m(\Omega)$ and $T_2 \in B_n(\Omega)$, is $E_{T_1} \otimes E_{T_2}$ identified with some operator in $B_{mn}(\Omega)$?

The answer is affirmative, and hence we get a natural operation: $B_m(\Omega) \times B_n(\Omega) \rightarrow B_{mn}(\Omega)$. We shall call this operation the "geometric tensor product."

DEFINITION 2.1.1. Let $T_1 \in B_m(\Omega)$, $T_2 \in B_n(\Omega)$, where T_j is defined on H_j (separable Hilbert space), $j = 1, 2$. We define the subspace $H(T_1) \otimes H(T_2)$ of $H_1 \otimes H_2$ by

$$H(T_1) \otimes H(T_2) = \text{span}\{\ker(T_1 - z) \otimes \ker(T_2 - z) : z \in \Omega\}$$

and the operator $T_1 \otimes T_2$ by

$$T_1 \otimes T_2 \overset{\text{def}}{=} (T_1 \otimes I)|_{H(T_1) \otimes H(T_2)}.$$

Observe that $H(T_1) \otimes H(T_2)$ is a common invariant subspace of $T_1 \otimes I$ and $I \otimes T_2$. Thus $T_1 \otimes T_2$ is well defined. Moreover, $\langle T_1 \otimes I \rangle|_{H(T_1) \otimes H(T_2)} = (I \otimes T_2)|_{H(T_1) \otimes H(T_2)}$ and $||T_1 \otimes T_2|| \leq \text{min}(||T_1||, ||T_2||)$.

LEMMA 2.1.1. Let W be any open subset of Ω, then

$$H(T_1) \otimes H(T_2) = \text{span}\{\ker(T_1 - z) \otimes \ker(T_2 - z) : z \in W\},$$

where T_1, T_2 are as in Definition 2.1.1.

PROOF. Let γ_j be a global holomorphic frame of E_{T_j} (cf. [G]), $j = 1, 2$. By Definition 2.1.1,

$$H(T_1) \otimes H(T_2) = \text{span}\{\gamma_1(z) \otimes \gamma_2(z) : z \in \Omega\}.$$

Also,

$$\text{span}\{\ker(T_1 - z) \otimes \ker(T_2 - z) : z \in W\} = \text{span}\{\gamma_1(z) \otimes \gamma_2(z) : z \in W\}.$$

The lemma then follows from the application of the Identity Theorem in complex analysis. \square
THEOREM 2.1.2. Let \(T_1 \in B_m(\Omega) \) and \(T_2 \in B_n(\Omega) \), then \(T_1 \ast T_2 \in B_mn(\Omega) \) and \(E_{T_1} \ast E_{T_2} = E_{T_1} \otimes E_{T_2} \).

PROOF. Step 1. We claim that for each \(z \in \Omega \),
\[
\ker(T_1 \ast T_2 - z) = \ker(T_1 - z) \otimes \ker(T_2 - z).
\]
Fix \(z \in \Omega \), since \((T_1 \ast T_2) - z = [(T_1 - z) \otimes I]H(T_1) \ast H(T_2) \), clearly \(\ker((T_1 \ast T_2) - z) \supset \ker(T_1 - z) \otimes \ker(T_2 - z) \).

Conversely, for any \(x \in H_1 \otimes H_2 \) write \(x = x_1 + x_2 + y \), where
\[
x_1 \in \ker(T_1 - z) \otimes \ker(T_2 - z), \quad x_2 \in \ker(T_1 - z) \otimes [\ker(T_2 - z)]^\perp,
\]
\[
y \in [\ker(T_1 - z)]^\perp \otimes H_2.
\]
Notice that since \((T_1 - z) \otimes I \) and \(I \otimes (T_2 - z) \) are both onto, as linear mappings \([(T_1 - z) \otimes I]\mid_{\ker(T_1 - z)} \otimes H_2 \) and \([I \otimes (T_2 - z)]\mid_{H_1 \otimes [\ker(T_2 - z)]^\perp} \) are both invertible.

Now, if \(x \in \ker(T_1 \ast T_2 - z) \), then \([(T_1 - z) \otimes I]y = [(T_1 \ast T_2) - z]x = 0 \), so \(y = 0 \); moreover \([I \otimes (T_2 - z)]x_2 = [(T_1 \ast T_2) - z]x = 0 \), so \(x_2 = 0 \). Thus \(x = x_1 \in \ker(T_1 - z) \otimes \ker(T_2 - z) \).

Step 2. We claim \(T_1 \ast T_2 - z \) is onto for each \(z \in \Omega \). (Notice that \(T_1 \ast T_2 \in B_mn(\Omega) \) will then follow from Step 1 and Step 2.)

Since \(T_1 \ast T_2 - z = (T_1 - z) \ast (T_2 - z) \) (by Definition 2.1.1), it will be enough if we assume \(0 \in \Omega \) and get a right inverse of \(T_1 \ast T_2 \).

Let \(S_j = T_j^*(T_j T_j^*)^{-1}, \ j = 1,2 \). It is easy to see (1) \(T_j S_j = \text{id} \) for \(j = 1,2 \); (2) if \(e_j \) is an orthonormal basis of \(\ker T_j \) (\(j = 1,2 \)), then \((1 - z S_j)^{-1} e_j \) is a local holomorphic frame of \(E_{T_j} \) near \(0 \) (\(j = 1,2 \)) and \(e_j \perp S_k e_j \) for all \(k \geq 1 \).

Let \(\{|z| < r\} \subset \Omega \) such that the two series \(\sum_{k=0}^{\infty} z^k (S_j^k e_j), \ j = 1,2, \) both converge in this disk. Then by Lemma 2.1.1,
\[
\text{span}_{0 < |z| < r} \left\{ \left[\sum_{k=0}^{\infty} z^k (S_1^k e_1) \right] \otimes \left[\sum_{k=0}^{\infty} z^k (S_2^k e_2) \right] \right\} = H(T_1) \ast H(T_2).
\]

If \(P \) is the orthogonal projection of \(H_1 \) onto \(\ker T_1 \), then the following computation shows \(H(T_1) \ast H(T_2) \) is invariant under \((S_1 \otimes I) + (P \otimes S_2) \):
\[
[(S_1 \otimes I) + (P \otimes S_2)] \left\{ \left(\sum_{k=0}^{\infty} z^k S_1^k e_1 \right) \otimes \left(\sum_{k=0}^{\infty} z^k S_2^k e_2 \right) \right\}
\]
\[
= \sum_{k=0}^{\infty} z^k S_1^k S_1^{k+1} e_1 \otimes \sum_{k=0}^{\infty} z^k S_2^k e_2 + e_1 \otimes \sum_{k=0}^{\infty} z^k S_2^k e_2^k e_2
\]
\[
= \frac{1}{z} \left\{ \left[\sum_{k=1}^{\infty} z^k S_1^k e_1 \right] \otimes \left[\sum_{k=0}^{\infty} z^k S_2^k e_2 \right] \right\} + \frac{1}{z} \left\{ e_1 \otimes \left[\sum_{k=1}^{\infty} z^k S_2^k e_2 \right] \right\}
\]
\[
= \frac{1}{z} \left\{ \left[\sum_{k=0}^{\infty} z^k S_1^k e_1 \right] \otimes \left[\sum_{k=0}^{\infty} z^k S_2^k e_2 \right] \right\} - \frac{1}{z} \left[e_1 \otimes e_2 \right],
\]
for all \(0 < |z| < r \).

Now, it becomes clear that \((S_1 \otimes I) + (P \otimes S_2) \) is a right inverse of \(T_1 \ast T_2 \).

Finally, \(T_1 \ast T_2 \) is identified with \(E_{T_1} \otimes E_{T_2} \), i.e. \(E_{T_1} \ast E_{T_2} = E_{T_1} \otimes E_{T_2} \) is a trivial consequence of Step 1. \(\square \)
2.2. Partial transformation induced by geometric tensor product. Fix $S \in B_1(\Omega_1)$ and consider the transformation

$$T \rightarrow S * T$$

($B_n(\Omega_2)$ to $B_n(\Omega_1 \cap \Omega_2)$). We shall prove that if S is almost the backward unilateral shift then $S * T \sim S \otimes i d_n$.

The philosophy of this proof is that “we can read $T \in B_n(\Omega)$ in a different way by reading E_T in a different way.”

Definition 2.2.1. Let $T \in B_n(\Omega)$, where Ω is a component of $C - \sigma_e(T)$. A holomorphic frame γ of E_T (defined near $z_0 \in \Omega$) will be said to be normalized at z_0 if $\gamma^*(z_0)\gamma(z) = I_n$ wherever γ is defined.

Notice that if γ is as in the definition above, then $\gamma(z_0) \perp (\partial^k_\gamma/\partial z^k)(z_0)$ for all $k \geq 1$.

Definition 2.2.2. If $T \in B_n(\Omega)$ and Ω is a component of $C - \sigma_e(T)$, then for each $z_0 \in \Omega$, we define the number $R(T, z_0)$ by

$$\max\{r \leq d(z_0, \sigma_e(T)) : \text{for each } |z - z_0| < r, \text{ there is no nontrivial subspace of ker}(T - z) \text{ perpendicular to ker}(T - z_0)\}.$$

(Notice: there is no nontrivial subspace of ker$(T - z)$ perpendicular to ker$(T - z_0) \iff$ for any basis γ_z of ker$(T - z)$ and basis γ_{z_0} of ker$(T - z_0)$, we have det$[\gamma_z^* \gamma_{z_0}] \neq 0$.)

It is easy to see that $R(T, z_0)$ is invariant under unitary equivalence of T and $R(T, z_0) > 0$ always.

Lemma 2.2.1. Let $T \in B_n(\Omega)$ and assume Ω is a component of $C - \sigma_e(T)$. Fix $z_0 \in \Omega$. Then there is a holomorphic frame defined on the entire disk $\{z : |z - z_0| < R(T, z_0)\}$ which is normalized at z_0.

Proof. Let $\tilde{\gamma}$ be a global holomorphic frame of E_T on Ω; then

$$\gamma(z) = \tilde{\gamma}(z)[\tilde{\gamma}^*(z_0)\tilde{\gamma}(z)]^{-1} [\tilde{\gamma}^*(z_0)\tilde{\gamma}(z)]^{1/2}$$

works. □

Lemma 2.2.2. Let $0 \in \Omega$, $T \in B_n(\Omega)$ and $0 < r < R(T, 0)$. Let γ be the holomorphic frame of E_T as defined in the lemma above. Then there is an orthonormal basis $\{e_j^{(k)} : j \geq 0, 1 \leq k \leq n\}$ (where $\gamma(z) = e_0 + \sum_{j=1}^{\infty} e_j B_j(z)$, where the $B_j(z)$'s are $n \times n$ matrices of analytic functions on $|z| < R(T, 0)$). Moreover, if $\|B_j\|_r^2 \overset{\text{def}}{=} \sup_{|z| \leq r} \|T^r(B_j^*(z)B_j(z))\|$, then

$$\sum_{j=1}^{\infty} \|B_j\|_r^2 < +\infty.$$

Proof. Notice that $\{(\partial^{k}_\gamma/\partial z^k)(0)\}_{k=0}^{\infty}$ is a linearly independent set spanning H (see [C-D, §1]). Also $\gamma(0) \perp (\partial^{k}_\gamma/\partial z^k)(0)$ for all $k \geq 1$ and $\gamma(0)$ is an orthonormal set.

We shall show that Gram-Schmidt orthonormalization $\{e_j\}_{j=0}^{\infty}$ of the set $\{(\partial^{k}_\gamma/\partial z^k)(0)\}_{k=0}^{\infty}$ is a right choice of our orthonormal basis.

Let $H_j = \text{span}\{(\partial^{k}_\gamma/\partial z^k)(0) : 0 \leq k \leq j\}$ for each $j \geq 0$.

Let $e_0 = \gamma(0)$ and, for each $j \geq 1$, let $e_j = (e_j^{(1)}, \ldots, e_j^{(n)})$ be an orthonormal basis of $H_j \ominus H_{j-1}$.
Thus \(\{ e_j^{(l)} : 1 \leq l \leq n, j = 0, 1, 2, \ldots \} \) is an orthonormal basis of \(H \) and for each \(k \geq 1 \) we have
\[
\frac{1}{k!} \left(\frac{\partial^k}{\partial z^k} \gamma \right)(0) = \sum_{i=1}^k e_i A_{ik},
\]
where \(A_{ik} \) is an \(n \times n \) constant matrix.

Now \(\gamma(z) = \sum_{j=1}^\infty (\sum_{i=1}^j e_i A_{ij}) z^j + e_0 \) on \(|z| < R(T,0) \) and \(\sum_{j=1}^\infty A_{ij} z^j = e_i^* \gamma(z) \) is convergent in \(M(n, \mathbb{C}) \).

Let \(\sum_{j=1}^\infty A_{ij} z^j = z^i \tilde{A}_i(z) = B_i(z) \). Then
\[
\gamma(z) = e_0 + \sum_{i=1}^\infty e_i B_i(z) \quad \text{for } |z| < R(T,0).
\]

For \(A \in M(n, \mathbb{C}) \), write \(\|A\|^2 = \text{tr}(A^* A) \).

Assume \(0 < r < \delta < R(T,0) \) and \(\|\gamma(z)\| = \sum_{j=0}^\infty \|z^j \tilde{A}_i(z)\|^2 \leq M \) for \(|z| \leq \delta \).

By the maximum principle, on \(|z| \leq \delta \), we have
\[
\|\delta^i \tilde{A}_i(z)\|^2 \leq \sup_{|\xi| = \delta} \|\xi^i \tilde{A}_i(\xi)\|^2 \leq \sup_{|\xi| = \delta} \|\gamma(\xi)\|^2 \leq M.
\]

Thus
\[
\sum_{i=1}^\infty \|B_i\|^2 = \sum_{i=1}^\infty \sup_{|z| \leq r} \|z^i \tilde{A}_i(z)\|^2 \leq \sum_{i=1}^\infty \sup_{|z| \leq \delta} \|z^i \tilde{A}_i(z)\|^2 \left(\frac{r}{\delta} \right)^{2i} \\
\leq M \sum_{i=1}^\infty \left(\frac{r}{\delta} \right)^{2i} < +\infty.
\]

Our next lemma is a generalization of Lemma 1.1.1.

If \(A \in H^\infty \otimes M(n,C) \), let \(||A||_2^2 \) \(\text{def} = \text{tr}(A^* A) \). It is easy to see \(||T_A|| < ||A||_\infty \), where \(T_A \) is the matrix analytic Toeplitz operator acting on \(H^2 \otimes \mathbb{C}^n = \hat{H} \) (as row vectors).

Now, if \(\{F_k\}_{k=1}^\infty \) is a sequence of \(n \times n \) matrices, each of them having all entries in \(H^\infty \), with \(\sum_{k=1}^\infty \|F_k\|^2 < \infty \), then \(\phi: \hat{H} \rightarrow \hat{H} \oplus \hat{H} \oplus \cdots \) defined by
\[
f \rightarrow f \oplus T_F^* f \oplus T_{F_2}^* f \oplus \cdots
\]
is clearly a bounded linear and bounded below mapping; denote its range by \(R \).

Lemma 2.2.3. If \(g \in H^\infty \cap QC \), let \(S_R(g) \) denote \((T_{g \otimes I_n}^* \oplus T_{g \otimes I_n}^* \oplus \cdots)|R \). Then \(S_R(g) \equiv (T_{g \otimes I_n}^* + K) \sim T_{g \otimes I_n}^* \), where \(K \) is a compact operator.

Proof. The operator \(S_R(g) \) is similar to \(T_{g \otimes I_n}^* \) via \(\phi \). By [BDF], it suffices to show \(S_R(g) \) is essentially normal. Let \(P \) be the orthogonal projection of \(\hat{H} \oplus \hat{H} \oplus \cdots \) onto \(R \), then
\[
(S_R(g))^* (\phi(f)) = P \{ T_{g \otimes I_n}(f) \oplus (T_{g \otimes I_n} \circ T_{F_1}(f)) \oplus (T_{g \otimes I_n} \circ T_{F_2}(f)) \oplus \cdots \} \\
= \phi(T_{g \otimes I_n}(f)) + P(0 \oplus L_1(f) \oplus L_2(f) \oplus \cdots),
\]
where \(L_j = [T_{g \otimes I_n}, T_{F_j}] \), which is compact.

Notice that \(\|L_j\| \leq 2\|g\|_\infty \circ \|F_j\|_\infty, j \geq 1 \).
Denote the bounded linear mapping \(f \to 0 \oplus L_1(f) \oplus L_2(f) \oplus \cdots \) by \(0 \oplus L_1 \oplus L_2 \oplus \cdots (\tilde{H} \text{ into } \tilde{H} \oplus \tilde{H} \oplus \cdots) \).

Set \(K_\infty = P \circ (0 \oplus L_1 \oplus L_2 \oplus \cdots) \circ \phi^{-1} \) and set
\[
K_j = P \circ (0 \oplus L_1 \oplus \cdots \oplus L_{j-1} \oplus L_j \oplus 0 \oplus 0 \oplus \cdots) \circ \phi^{-1}.
\]
Then \(K_j \) is compact and \(K_j \to K_\infty \) follows from
\[
\| (K_\infty - K_j) \phi(f) \|^2 \leq \sum_{k=j+1}^\infty \| L_k(f) \|^2 \leq \left\{ 4 \| g \|^2_\infty \left(\sum_{k=j+1}^\infty \| F_k \|^2 \right) \right\} \| f \|^2.
\]
Therefore \(K_\infty \) is compact.

Finally, using \((S_R(g))^* \phi(f) = \phi(T_g \otimes I_0(f)) + K_\infty(f) \), we can directly check
\[
[S_R(g), (S_R(g))^*] = \phi \circ [T_g \otimes I_0, T_g \otimes I_0] \circ \phi^{-1} + [S_R(g), K_\infty]. \tag*{\Box}
\]

Now, we are ready to prove the main result of this section.

Theorem 2.2.4. For any \(T \in B_n(\Omega) \) (where \(\Omega \) is a component of \(C - \sigma_e(T) \)) and \(z_0 \in \Omega \), let \(0 < r < R(T, z_0) \) and \(g(z) = z_0 + rz \). Then
\[
T_g^* T \cong (T_g^* I_0 + K) \sim T_g^* I_0,
\]
where \(K \) is a compact operator.

Proof. Without loss of generality, we assume \(z_0 = 0 \in \Omega \). Let \(\gamma(z), \{ B_j(z) \}_{j=1}^\infty \) be as in Lemma 2.2.2, and write \(B_j(z) = \overline{B_j(z)} \). Then by Lemma 2.2.2, the linear mapping
\[
\phi: f \to f \oplus T_{B_1 \circ g}(f) \oplus T_{B_2 \circ g}(f) \oplus \cdots
\]
is bounded and clearly bounded below. Let \(R_T = \text{range}(\phi) \) and
\[
S_{R_T}(g) = \left(T_{g \otimes I_0} \oplus T_{g \otimes I_0} \oplus \cdots \right)|_{\text{range}(\phi)}.
\]
By Lemma 2.2.3, the theorem will be true once we show \(S_{R_T}(g) \cong T_g^* T \). This last equivalence is achieved by the holomorphic isometric bundle map from \(E_{S_{R_T}(g)} \) to \(E_{T_g^* T} \) (both over the disk \(rD \))
\[
[k_{g(z)} \otimes I_0] \oplus B_1(z) k_{g(z)} \oplus B_2(z) k_{g(z)} \oplus \cdots \to k_{g(z)} \otimes \gamma(z)
\]
where \(\gamma(z) = \overline{g^{-1}(z)} \) and \(k_z(\xi) = 1/(1 - \xi z) \) is the reproducing kernel of the Hardy space. \(\Box \)

Corollary 2.2.5. If \(z_0 = 0 \) and \(T \), \(\Omega \), \(g \), \(r \) are all as above, then \(||T_g^* T|| = ||T_g^*|| = r \).

Proof. By Definition 2.2.1, \(||T_g^* T|| \leq ||T^*|| = r \); also by Weyl’s theorem about the spectrum of a compact perturbation (see [H]),
\[
||T^* g^* I_0 + K|| = ||T^* z^* I_0 + K/r|| \geq r. \tag*{\Box}
\]

Corollary 2.2.6. If \(z_0 = 0 \) and \(T \in B_n(\Omega) \), \(R(T, 0) > 1 \), then
\[
T^* z^* T \cong (T^* z^* I_0 + K) \sim T^* z^* I_0,
\]
where \(K \) is a compact operator.
Definition 2.2.3. Let \(J \) be the set of Cowen-Douglas operators \(T \) with \(0 \in C - \sigma_e(T) \) and \(R(T, 0) > 1 \). Then we define the transformation \(\psi : J \rightarrow \bigcup_{n=1}^{\infty} B_n(D) \) by \(\psi(T) = T_e^* \ast T \).

What is this transformation good for? In addition to Corollaries 2.2.5, 2.2.6, we have "\(T_1 \) and \(T_2 \) are equivalent to order \(k \leftrightarrow \psi(T_1) \) and \(\psi(T_2) \) are equivalent to order \(k \) (in particular, \(T_1 \cong T_2 \leftrightarrow \psi(T_1) \cong \psi(T_2) \))", "\(T \) and \(\psi(T) \) have the same reducibility." Some other properties of this transformation were discussed in [L].

Before we studied the transformation, we had the Fourier and Laplace transformations in mind. But it turns out the flavor is quite different. Further modification of the transformation or a new way of studying this transformation is expected.

2.3. The square transformation induced by geometric tensor product.

Definition 2.3.1. We define the square transformation \(\Gamma : B_1(\Omega) \rightarrow B_1(\Omega) \) by \(\Gamma(T) = T \ast T \).

Theorem 2.3.1. If \(T_1, T_2 \in B_1(\Omega) \) and \(T_1 \sim T_2 \), then \(\Gamma(T_1) \sim \Gamma(T_2) \).

Proof. Let \(T_2 = Q^{-1} T_1 Q \), where \(Q \) is an invertible operator. Then \(T_2 \otimes I = (Q^{-1} \otimes Q^{-1})(T_1 \otimes I)(Q \otimes Q) \).

Notice that

\[
H(T_2) \ast H(T_2) = (Q^{-1} \otimes Q^{-1})[H(T_1) \ast H(T_1)].
\]

Now it is easy to check that the following diagram commutes:

\[
\begin{array}{ccc}
H(T_2) \ast H(T_2) & \xrightarrow{T_2 \otimes I} & H(T_2) \ast H(T_2) \\
Q^{-1} \otimes Q^{-1} & & Q^{-1} \otimes Q^{-1} \\
H(T_1) \ast H(T_1) & \xrightarrow{T_1 \otimes I} & H(T_1) \ast H(T_1). & \square
\end{array}
\]

Since the curvature of \(T \) is exactly one half of the curvature of \(\Gamma(T) \), so we have

Theorem 2.3.2. If \(T_1, T_2 \in B_1(\Omega) \), then \(T_1 \cong T_2 \Leftrightarrow \Gamma(T_1) \cong \Gamma(T_2) \).

Theorem 2.3.3. If \(g \in H^\infty \) and \(T_g^* \in B_1(\Omega) \), then \(\Gamma(T_g^*) \cong B_g^* \), the corresponding Toeplitz operator on the Bergman space.

Proof. From Lemma 1.2.1, we know \(g : g^{-1}(\bar{\Omega}) \rightarrow \bar{\Omega} \) is a conformal equivalence.

For \(B_g^* \), if we repeat the proof of Lemma 1.2.1 word by word, it is easy to see \(B_g^* \in B_1(\Omega) \).

Let \(\beta_z(\xi) = \pi^{-1}(1 - \xi z)^{-2} \) be the Bergman kernel. Recall \(B_g^*(\beta_z) = g(\bar{z}) \beta_z \), so the mapping

\[
k_{g^{-1}(\bar{z})} \otimes k_{g^{-1}(\bar{z})} \rightarrow \beta_{g^{-1}(\bar{z})} \quad (z \in \Omega)
\]

gives a holomorphic isometric bundle map from \(E_{T_g^*} \) to \(E_{B_g^*} \). \(\square \)

It is well known that for each \(\psi \in C(\text{clos}(D)) \), \(T_{\phi|_{S^1}} \), and \(B_\phi \) are unitarily equivalent up to compact perturbation (see [CO]). We pose a problem here (related to Theorem 2.3.3):

Let \(\psi \in C(S^1) \) with harmonic extension \(\hat{\phi} \) to \(D \). If \(T_\phi \in B_1(\Omega) \), do we have \(\Gamma(T_\phi) \cong B_\phi? \)

We hope this approach can lead to a rediscovery of the fact: \(B_g^* \) is not unitarily equivalent to any Toeplitz operator on Hardy space.
SOME GEOMETRIC NOTIONS

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045

Current address: Institute of Mathematics, Academia Sinica, Beijing, China