Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Operator methods and Lagrange inversion: a unified approach to Lagrange formulas


Author: Ch. Krattenthaler
Journal: Trans. Amer. Math. Soc. 305 (1988), 431-465
MSC: Primary 05A30; Secondary 05A17, 11P57
DOI: https://doi.org/10.1090/S0002-9947-1988-0924765-4
MathSciNet review: 924765
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a general method of proving Lagrange inversion formulas and give new proofs of the $ s$-variable Lagrange-Good formula [13] and the $ q$-Lagrange formulas of Garsia [7], Gessel [10], Gessel and Stanton [11, 12] and the author [18]. We also give some $ q$-analogues of the Lagrange formula in several variables.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Askey and M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc. 49 (1984), no. 300. MR 743545 (85g:33008)
  • [2] L. Carlitz, Some inverse relations, Duke Math. J. 40 (1973), 893-901. MR 0337651 (49:2420)
  • [3] J. Cigler, Operatormethoden für $ q$-Identitäten, Monatsh. Math. 88 (1979), 87-105. MR 551934 (81h:05009)
  • [4] G. P. Egorychev, Integral representation and the computation of combinatorial sums, "Nauka" Sibirsk. Otdel., Novosibirsk, 1977; English transl., Transl. Math. Monographs, no. 59, Amer. Math. Soc., Providence, R. I., 1984. MR 736151 (85a:05008)
  • [5] L. Euler, De serie Lambertina plurimisque eius insignibus proprietatibus, Acta Acad. Sci. Petro, 1779; II, 1783, pp. 29-51; reprinted in Opera omnia, Ser. I, vol. 6, Teubner, Leipzig, 1921, pp. 350-369.
  • [6] J. Fürlinger and J. Hofbauer, $ q$-Catalan numbers, J. Combin. Theory A 40 (1985), 248-264. MR 814413 (87e:05017)
  • [7] A. M. Garsia, A $ q$-analogue of the Lagrange inversion formula, Houston J. Math. 7 (1981), 205-237. MR 638947 (82m:05010)
  • [8] A. M. Garsia and S. A. Joni, A new expression for umbral operators and power series inversion, Proc. Amer. Math. Soc. 64 (1977), 179-185. MR 0444487 (56:2838)
  • [9] -, Higher dimensional polynomials of binomial type and formal power series inversion, Comm. Algebra 6 (1978), 1187-1215. MR 0491219 (58:10484)
  • [10] I. Gessel, A noncommutative generalization and $ q$-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), 455-482. MR 552269 (82g:05006)
  • [11] I. Gessel and D. Stanton, Applications of $ q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-203. MR 690047 (84f:33009)
  • [12] -, Another family of $ q$-Lagrange inversion formulas, Rocky Mountain J. Math. 16 (1986), 373-384. MR 843058 (87i:33007)
  • [13] I. J. Good, Generalization to several variables of Lagrange's expansion, with application to stochastic processes, Proc. Cambridge Philos. Soc. 56 (1960), 367-380. MR 0123021 (23:A352)
  • [14] H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885-891. MR 0337652 (49:2421)
  • [15] J. Hofbauer, A $ q$-analog of the Lagrange expansion, Arch. Math. 42 (1984), 536-544. MR 756895 (85i:05025)
  • [16] -, Lagrange-inversion (Seminaire Lotharingien de Combinatoire), I.R.M.A. n$ ^\circ$ 191/S-05, Strasbourg, 1982.
  • [17] S. A. Joni, Lagrange inversion in higher dimensions and umbral operators, Linear and Multilinear Algebra 6 (1978), 111-121. MR 0491220 (58:10485)
  • [18] C. Krattenthaler, A new $ q$-Lagrange formula and some applications, Proc. Amer. Math. Soc. 90 (1984), 338-344. MR 727262 (85g:05022)
  • [19] -, $ q$-Lagrangeformel und inverse Relationen, Ph.D. dissertation, Vienna, 1983.
  • [20] P. A. MacMahon, Combinatory analysis, 2 vols., Cambridge Univ. Press, London, 1915-1916; reprint, Chelsea, New York, 1960. MR 0141605 (25:5003)
  • [21] -, Collected papers, Vol. I: Combinatorics, MIT Press, Cambridge, Mass., 1978. MR 514405 (80k:01065)
  • [22] J. Riordan, Combinatorial identities, Wiley, New York, 1968. MR 0231725 (38:53)
  • [23] S. S. Abhyankar, Lectures in algebraic geometry, Notes by Chris Christensen, Purdue Univ., 1974.
  • [24] A. Brini, Higher dimensional recursive matrices and diagonal delta sets of series, J. Combin. Theory Ser. A 36 (1984), 315-331. MR 744080 (86d:05013)
  • [25] A. M. Garsia and S. A. Joni, Composition sequences, Comm. Algebra 6 (1978), 1187-1215. MR 0491219 (58:10484)
  • [26] I. Gessel, A combinatorial proof of the multivariable Lagrange inversion formula, J. Combin. Theory Ser. A 45 (1987), 178-196. MR 894817 (88h:05011)
  • [27] P. Henrici, Die Lagrange-Bürmannsche Formel bei formalen Potenzreihen, Jber. Deutsch Math.-Verein 86 (1984), 115-134. MR 766156 (86d:30007)
  • [28] O. Viskov, Inversion of power series and the Lagrange formula, Soviet Math. Dokl. 22 (1980), 330-332.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05A30, 05A17, 11P57

Retrieve articles in all journals with MSC: 05A30, 05A17, 11P57


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0924765-4
Keywords: Lagrange inversion formula, $ q$-Lagrange inversion formula, inverse relations, umbral operators, $ q$-exponential function, $ q$-Catalan numbers
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society