Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Paracommutators--boundedness and Schatten-von Neumann properties


Authors: Svante Janson and Jaak Peetre
Journal: Trans. Amer. Math. Soc. 305 (1988), 467-504
MSC: Primary 47B38; Secondary 42B20, 47B10, 47B35
DOI: https://doi.org/10.1090/S0002-9947-1988-0924766-6
MathSciNet review: 924766
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A very general class of operators, acting on functions in $ {L^2}({{\mathbf{R}}^d})$, is introduced. The name "paracommutator" has been chosen because of the similarity with the paramultiplication of Bony and also because paracommutators comprise as a special case commutators of Calderón-Zygmund operators, as well as many other interesting examples (Hankel and Toeplitz operators etc.). The main results, extending previous results by Peller and others, express boundedness and Schatten-von Neumann properties of a paracommutator in terms of its symbol.


References [Enhancements On Off] (What's this?)

  • [1] M. Ahlmann (1984), The trace ideal criterion for Hankel operators on the weighted Bergman space $ {A^{\alpha 2}}$ in the unit ball of $ {C^n}$, Technical report 1984-3, Univ. Lund.
  • [2] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603–639. MR 0493490
  • [3] J. Bergh and J. Löfström (1976), Interpolation spaces, Grundlehren Math. Wiss., vol. 223, Springer-Verlag, Berlin, Heidelberg and New York.
  • [4] Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751
  • [5] A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099. MR 0177312
  • [6] Jonathan Cohen, Multilinear singular integrals, Studia Math. 68 (1980), no. 3, 261–280. MR 599149
  • [7] Jonathan Cohen and John A. Gosselin, On multilinear singular integrals on 𝑅ⁿ, Studia Math. 72 (1982), no. 3, 199–223. MR 671397
  • [8] Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
  • [9] -(1980), Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, Euclidean Harmonic Analysis (Proceedings, Univ. Maryland 1979), Lecture Notes in Math., vol. 779, Springer-Verlag, Berlin, Heidelberg and New York, pp. 104-122.
  • [10] R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, https://doi.org/10.2307/2007065
  • [11] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in 𝐿^{𝑝}, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
  • [12] R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 0412721, https://doi.org/10.2307/1970954
  • [13] Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397. MR 763911, https://doi.org/10.2307/2006946
  • [14] Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR 0361893
  • [15] L. Hörmander (1979), The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32, 359-443.
  • [16] Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
    Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR 781537
  • [17] Svante Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), no. 2, 263–270. MR 524754, https://doi.org/10.1007/BF02386000
  • [18] Svante Janson and Jaak Peetre, Higher order commutators of singular integral operators, Interpolation spaces and allied topics in analysis (Lund, 1983) Lecture Notes in Math., vol. 1070, Springer, Berlin, 1984, pp. 125–142. MR 760479, https://doi.org/10.1007/BFb0099097
  • [19] Svante Janson and Jaak Peetre, A new generalization of Hankel operators (the case of higher weights), Math. Nachr. 132 (1987), 313–328. MR 910059, https://doi.org/10.1002/mana.19871320121
  • [20] Svante Janson, Jaak Peetre, and Stephen Semmes, On the action of Hankel and Toeplitz operators on some function spaces, Duke Math. J. 51 (1984), no. 4, 937–958. MR 771389, https://doi.org/10.1215/S0012-7094-84-05142-1
  • [21] Svante Janson and Thomas H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), no. 2, 301–310. MR 686178, https://doi.org/10.1007/BF02390515
  • [22] Charles A. McCarthy, 𝑐_{𝑝}, Israel J. Math. 5 (1967), 249–271. MR 0225140, https://doi.org/10.1007/BF02771613
  • [23] Margaret A. M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J. 34 (1985), no. 1, 205–215. MR 773402, https://doi.org/10.1512/iumj.1985.34.34012
  • [24] N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223
  • [25] Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR 0461123
  • [26] Jaak Peetre, Hankel operators, rational approximation and allied questions of analysis, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 287–332. MR 729337
  • [27] -(1984), Invariant function spaces connected with the holomorphic discrete series, Anniversary Volume on Approximation Theory and Functional Analysis (Proceedings, Oberwolfach 1983), Internat. Ser. Numer. Math., vol. 65, Birkhäuser, Basel, Boston and Stuttgart, pp. 199-134.
  • [28] Jack Peetre, Paracommutators and minimal spaces, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 163–224. MR 810447
  • [29] -(1985b), Invariant function spaces and Hankel operators--a rapid survey, Exposition. Math. 5 (1986), 3-16.
  • [30] V. V. Peller, Hankel operators of class 𝔖_{𝔭} and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. (N.S.) 113(155) (1980), no. 4(12), 538–581, 637 (Russian). MR 602274
  • [31] -(1982), Hankel operators of the Schatten-von Neumann class $ {S_p}$, $ 0 < p < 1$, LOMI preprints E-6-82, Leningrad.
  • [32] -(1984), Nuclear Hankel operators acting between $ {H^p}$ spaces, Operator Theory: Adv. Appl. 14, 213-220.
  • [33] V. V. Peller, Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 37–51, 96 (Russian). MR 800919
  • [34] L. Zh. Peng (1984), Compactness of para-products, Technical report 1984-13, Univ. Stockholm.
  • [35] Li Zhong Peng, On compactness of paracommutators, Ark. Mat. 26 (1988), no. 2, 315–325. MR 1050111, https://doi.org/10.1007/BF02386126
  • [36] -(1986), Paracommutators of Schatten-von Neumann class $ {S_p}$, $ 0 < p < 1$, Math. Scand. (to appear).
  • [37] S. C. Power (1982), Hankel operators in Hilbert spaces, Research Notes in Math., vol. 64, Pitman, Boston, London and Melbourne.
  • [38] Richard Rochberg, Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J. 31 (1982), no. 6, 913–925. MR 674875, https://doi.org/10.1512/iumj.1982.31.31062
  • [39] Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR 521811
  • [40] Stephen Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), no. 2, 241–281. MR 750221, https://doi.org/10.1007/BF01200377
  • [41] Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
  • [42] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [43] R. S. Strichartz (1982), Para-differential operators--another step forward for the method of Fourier, Notices Amer. Math. Soc. 29, 402-406.
  • [44] D. Timotin (1984), A note on $ {C_p}$ estimates for certain kernels, Preprint 47/1984, INCREST, Bucharest.
  • [45] -(1985), $ {C_p}$-estimates for certain kernels: the case $ 0 < p < 1$, Preprint, INCREST, Bucharest.
  • [46] Akihito Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. (2) 30 (1978), no. 1, 163–171. MR 0467384, https://doi.org/10.2748/tmj/1178230105

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B38, 42B20, 47B10, 47B35

Retrieve articles in all journals with MSC: 47B38, 42B20, 47B10, 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0924766-6
Article copyright: © Copyright 1988 American Mathematical Society