Minimal -types for over a -adic field

Author:
Allen Moy

Journal:
Trans. Amer. Math. Soc. **305** (1988), 517-529

MSC:
Primary 22E50

MathSciNet review:
924768

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We single out certain representations of compact open subgroups of over a -adic field and show they play a role in the representation theory of similar to minimal -types in the theory of real groups.

**[C]**Bomshik Chang,*The conjugate classes of Chevalley groups of type (𝐺₂)*, J. Algebra**9**(1968), 190–211. MR**0227258****[HC]**Harish-Chandra,*Eisenstein series over finite fields*, Functional analysis and related fields (Proc. Conf. M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 76–88. MR**0457579****[HM1]**R. Howe, with the collaboration of A. Moy and Harish-Chandra,*Homomorphisms for*-*adic groups*, CBMS Regional Conf. Ser. in Math., No. 59, Amer. Math. Soc., Providence, R. I., 1985.**[HM2]**R. Howe and A. Moy,*Hecke algebra isomorphisms for**over a*-*adic field*, preprint.**[KM]**Philip Kutzko and David Manderscheid,*On the supercuspidal representations of 𝐺𝐿₄. I*, Duke Math. J.**52**(1985), no. 4, 841–867. MR**816388**, 10.1215/S0012-7094-85-05244-5**[M1]**Allen Moy,*Representations of 𝑈(2,1) over a 𝑝-adic field*, J. Reine Angew. Math.**372**(1986), 178–208. MR**863523**, 10.1515/crll.1986.372.178**[M2]**-,*Representations of**over a*-*adic field*. I, II, preprint.**[PR]**Gopal Prasad and M. S. Raghunathan,*Topological central extensions of semisimple groups over local fields*, Ann. of Math. (2)**119**(1984), no. 1, 143–201. MR**736564**, 10.2307/2006967**[S]**George B. Seligman,*On automorphisms of Lie algebras of classical type. II*, Trans. Amer. Math. Soc.**94**(1960), 452–482. MR**0113969**, 10.1090/S0002-9947-1960-0113969-9

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E50

Retrieve articles in all journals with MSC: 22E50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1988-0924768-X

Article copyright:
© Copyright 1988
American Mathematical Society