Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The continuous $ (\alpha, \beta)$-Jacobi transform and its inverse when $ \alpha+\beta+1$ is a positive integer

Authors: G. G. Walter and A. I. Zayed
Journal: Trans. Amer. Math. Soc. 305 (1988), 653-664
MSC: Primary 44A15; Secondary 33A65
MathSciNet review: 924774
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The continuous $ (\alpha ,\,\beta )$-Jacobi transform is introduced as an extension of the discrete Jacobi transform by replacing the polynomial kernel by a continuous one. An inverse transform is found for both the standard and a modified normalization and applied to a version of the sampling theorem. An orthogonal system forming a basis for the range is shown to have some unusual properties, and is used to obtain the inverse.

References [Enhancements On Off] (What's this?)

  • [1] P. Butzer, R. Stens and M. Wehrens, The continuous Legendre transform, its inverse transform and applications, Internat. J. Math. Math. Sci. 3 (1980), 47-67. MR 576629 (81h:44002)
  • [2] L. Campbell, A comparison of the sampling theorems of Kramer and Whittaker, J. Soc. Indust. Appl. Math. 12 (1964), 117-130. MR 0164173 (29:1472)
  • [3] E. Deeba and E. Koh, The continuous Jacobi transform, Internat. J. Math. Math. Sci. 6 (1983), 145-160. MR 689452 (84h:44009)
  • [4] A. Erdélyi et al., Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [5] A. Jerri, On the application of some interpolating functions in physics, J. Res. Nat. Bur. Standards Sect. B Math. Sci. 73B (1969), 241-245. MR 0256026 (41:686)
  • [6] -, Sampling expansion for the $ L_\nu ^\alpha $-Laguerre integral transform, J. Res. Nat. Bur. Standards Sect. B Math. Sci. 80B (1976), 415-418.
  • [7] H. Kramer, A generalized sampling theorem, J. Math. Phys. 38 (1959), 68-72. MR 0103786 (21:2550)
  • [8] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special Functions: Group Theoretical Aspects and Applications (eds., Askey, Koornwinder and Schempp), Reidel, Dordrecht, 1984, pp. 1-85. MR 774055 (86m:33018)
  • [9] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1974.
  • [10] G. Walter, A finite continuous Gegenbaur transform and its inverse (to appear).
  • [11] A. Zemanian, Generalized integral transformations, Wiley, New York, 1968. MR 0423007 (54:10991)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A15, 33A65

Retrieve articles in all journals with MSC: 44A15, 33A65

Additional Information

Keywords: Jacobi functions, inverse transform, Shannon sampling theorem
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society