UNIVALENT FUNCTIONS IN $H \cdot \overline{H}(D)$

Z. ABDULHADI AND D. BSHOUTY

Abstract. Functions in $H \cdot \overline{H}(D)$ are sense-preserving of the form $f = h \cdot \overline{g}$ where h and g are in $H(D)$. Such functions are solutions of an elliptic nonlinear P.D.E. that is studied in detail especially for its univalent solutions.

1. Introduction. Let D be a domain of \mathbb{C}, and $H(D)$ the set of all analytic functions defined on D endowed with the topology of normal (locally uniform) convergence. Denote by $H \cdot \overline{H}(D)$ the set of all complex-valued mappings f defined on D of the form

$$f = H \cdot \overline{G}; \quad H \text{ and } G \text{ are locally in } H(D)$$

which are open and preserve the orientation. Such a mapping satisfies the nonlinear elliptic differential equation

$$f_z = \left[a \cdot \frac{f}{f'} \right] f$$

where

$$a \in H(D) \quad \text{and} \quad a(D) \subset U = \{ \zeta ; |\zeta| < 1 \}.$$

The motivation behind the study of such a class comes from the fact that for any sense-preserving harmonic function $u = Hx + Gx$, Hx and Gx in $H(D)$, e^u is a nonvanishing function of $H \cdot \overline{H}(D)$. Thus, of particular interest are those functions of $H \cdot \overline{H}(D)$ that vanish in D, as their zeros correspond to some singularities of harmonic functions.

In §2 we study solutions of (1.2) with a as in (1.3). By a solution we mean a complex-valued function in the Sobolev space $W^{1,2}_{\text{loc}}$ which satisfies (1.2) almost everywhere. For $a \equiv 0$ we are led to the set of nonconstant function in $H(D)$. However, for other functions, a, satisfying (1.3) we may have solutions which are not in $H \cdot \overline{H}(D)$. For instance $f(z) = z |z|^{2\alpha}$, $\text{Re}(\alpha) > -\frac{1}{2}$ and $f(1) = 1$ is a solution of (1.2) in \mathbb{C} with $a \equiv \overline{\alpha}/(1 + \alpha)$. We then denote by $\mathcal{F}(a, D)$ the set of all nonconstant solutions of (1.2) in D, where the given function a always satisfies (1.3). The relation between $\mathcal{F}(a, D)$ and $H \cdot \overline{H}(D)$ is finally established.

§3 is concerned with the univalent solutions of (1.2) with a as in (1.3). It includes the characterization of the univalent functions of $\mathcal{F}(a, C)$.

§4 contains an example showing that in general, the Riemann Mapping Theorem fails in our case. Instead, we establish the Mapping Theorem from the unit disk into a bounded simply connected domain of \mathbb{C}, the boundary of which is locally connected.

Received by the editors November 4, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C60; Secondary 35J60.

©1988 American Mathematical Society
0002-9947/88 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. **Representation theorems.** Let D be a domain of \mathbb{C} and $f \in \mathcal{F}(a, D)$. Then f is a nonconstant locally quasiregular mapping and therefore it is open and sense preserving. Denote by $Z(f)$ the zero set of f, i.e.,

$$Z(f) = \{z \in D; f(z) = 0\}.$$

For $z_0 \in D \setminus Z(f)$, let $B(z_0, \rho) \subseteq D \setminus Z(f)$, where

$$B(z_0, \rho) = \{z; |z - z_0| < \rho\}.$$

Since

$$\overline{(\log f)'_z} = a(\log f)'_z; \quad z \in D \setminus Z(F),$$

we may choose a branch of $\log f$ which is harmonic in $B(z_0, \rho)$ [4]. Observe that f'/f and $\overline{f'/f}$ are in $H(B(z_0, \rho))$. Put

$$H(z) = f(z_0) \exp \left(\int_{z_0}^z \frac{f_1(s)}{f(s)} \, ds \right)$$

and

$$G(z) = \exp \left(\int_{z_0}^z \frac{f_\overline{s}(s)}{f(s)} \, ds \right),$$

for $z \in B(z_0, \rho)$. Then $f = H \cdot \overline{G} \in H \cdot \overline{H}(B(z_0, \rho)).$ Note that although f'/f and $\overline{f'/f}$ are in $H((D \setminus Z(f)))$, yet H and G can be multivalued locally analytic functions.

Conversely, let f be in $H \cdot \overline{H}(D)$ and $0 \notin f(D)$. Then $f = H \cdot \overline{G}$, H and G in $H(D)$, is open and preserves orientation. Therefore, $a = (f'/f)/(\overline{f'/f}) = (G'/G)/(H'/H)$ is in $H((D \setminus Z(H' \cdot G)))$ and $a(D \setminus Z(h')) \subset U$. Since f is sense preserving, H is not a constant, which implies that $Z(H'G)$ is a discrete set in D. Therefore, $a \in H(D)$ and $a(D) \subset U$.

Summarizing, we have the following lemma.

Lemma 2.1. Let D be a simply connected domain of \mathbb{C}. A nonvanishing function f is in $H \cdot \overline{H}(D)$ if and only if f is in $\mathcal{F}(a, D)$ for some function a satisfying (1.3).

Next, we shall investigate the behavior of a solution f in $\mathcal{F}(a, D)$ at a point $z_0 \in D$ where f vanishes. We start by noting that $Z(f)$ is discrete in D. Indeed, f is a nonconstant locally quasiregular mapping and therefore it is continuous, open and light. By a theorem of Stoiloff it follows that f can be represented as a composition of two functions

$$f = E \circ \chi$$

where χ is a locally quasiconformal homeomorphism on D and $E \in H(\chi(D))$. The result follows.

Lemma 2.2. Let f be in $\mathcal{F}(a, D)$. Suppose that $f(z_0) = 0$ and that $B(z_0, \rho) \setminus \{z_0\} \subset D \setminus Z(f)$. Then f admits the representation

$$f(z) = (z - z_0)^n |z - z_n|^{2\beta} \cdot h(z) \cdot \overline{g(z)}; \quad z \in B(z_0, \rho),$$

where $n = \arg \left(\frac{(f/z)'_z}{(f/z)'_{\overline{z}}} \right)$.
where \(n \in \mathbb{N} \), \(\beta = \overline{na(z_0)}(1 + a(z_0))/(1 - |a(z_0)|^2) \) and therefore \(\text{Re}\{\beta\} > -n/2 \).

Proof. Since \(f_z/f \) and \(\overline{f_z/f} \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

Proof. Since \(f_z/f \) and \(f_z/f \) are in \(H(B(z_0, \rho)) \), \(h(z_0) \neq 0 \) and \(g(z_0) = 1 \).

The main result of this section is

Theorem 2.3. Let \(D \) be a simply connected domain of \(\mathbb{C} \). If \(f \) is in \(H \cdot \overline{H}(D) \) then \(f \) is in \(\mathcal{F}(a, D) \) for some function \(a \) satisfying (1.3) such that \(a(z) \) is a rational number in \([0, 1)\) whenever \(z \in Z(f) \). Conversely, let \(f \) be in \(\mathcal{F}(a, D) \) and suppose that for each \(z_0 \in Z(f) \) we have \(a(z_0) = p(z_0)/q(z_0) \in [0, 1) \) where \(p(z_0) \in \mathbb{N} \cup \{0\} \), \(q(z_0) \in \mathbb{N} \), and \(q(z_0) - p(z_0) \) is a divisor of \(p(z_0) \). Then \(f \) is in \(H \cdot \overline{H}(D) \).

Proof. Let

\[
f \in H \cdot \overline{H}(D).
\]
Then \(f \) is not a constant and belongs to \(\mathcal{H}(a, D \setminus Z(f)) \) for some \(a \) as in (1.3). Since \(Z(f) \) is discrete in \(D \), the function \(a \) has an analytic continuation in \(D \) and \(a(D) \subset U \). Let \(z_0 \in Z(f) \). Then by (1.1) we have

\[
a(z_0) = \lim_{z \to z_0} \frac{(z - z_0)G'(z)/G(z)}{((z - z_0)H'(z)/H(z))}
\]

where \(p \) and \(q \) are the zero order of \(H \) and \(G \) at \(z_0 \), respectively. Conversely, let \(f \in \mathcal{H}(a, D) \) and suppose that for each \(z \in Z(f) \) we have \(a(z) = p(z)/q(z) \in [0, 1) \) where \(p(z) \in \mathbb{N} \cup \{0\} \), \(q(z) \in \mathbb{N} \), and \(q(z) - p(z) \) is a divisor of \(p(z) \). Fix \(\xi \in D \). If \(f(\xi) \neq 0 \), then by Lemma 2.1 \(f \in H \cdot \overline{H}(B(\xi, \rho)) \) whenever \(B(\xi, \rho) \subset D \). If \(f(\xi) = 0 \), then by Lemma 2.2, (2.2) holds with \(\beta = p/(q - p) \in \mathbb{N} \) and again: \(f \in H \cdot \overline{H}(B(\xi, \rho)) \) whenever \(B(\xi, \rho) \subset D \). Observe that if \(f = H_1 \cdot \overline{G}_1 = H_2 \cdot \overline{G}_2 \) on a disk \(B(\xi, \rho) \subset D \) and \(G_1(z_0) = G_2(z_0) \) then \(H_1 = H_2 \) and \(G_1 = G_2 \). \(D \) being simply connected, there are \(H \) and \(G \) in \(H(D) \) such that \(f = H \cdot G \in H \cdot \overline{H}(D) \).

3. Univalent functions in \(H \cdot \overline{H}(D) \). Let \(D \) be a simply connected domain of \(\mathbb{C} \), and \(z_0 \in D \). Then the following characterization follows from Theorem 2.3.

Theorem 3.1. Let \(f \) be a univalent mapping defined on \(D \) such that \(f(z_0) = 0 \). Then \(f \) is in \(H \cdot \overline{H}(D) \) if and only if \(f \in \mathcal{H}(a, D) \) for some \(a \) satisfying (1.3) such that \(a(z_0) = m/(1 + m); m \in \mathbb{N} \cup \{0\} \).

Proof. If \(f \in H \cdot \overline{H}(D) \) is univalent, then the exponent \(n \) in (2.2) is one and \(a(z_0) = m/(1 + m) \) where \(m \) is a nonnegative integer. The converse is covered by Theorem 2.3. \(\square \)

Lemma 3.2. Let \(D \) be a simply connected domain of \(\mathbb{C} \) and \(f \) a univalent function in \(\mathcal{H}(a, D) \). Then we have

(a) \(f_z(z) \neq 0 \) for all \(z \in D \) whenever \(f(z) \neq 0 \), and

(b) If \(f(z_0) = 0 \) then \(\lim_{z \to z_0} (z - z_0)f_z(z)/f(z) \) exists and is in \(\mathbb{C} \setminus \{0\} \).

Therefore \((z - z_0)f_z/f \) is a nonvanishing function in \(H(D) \).

Proof. (a) Let \(f(z) \neq 0 \). Then \(\log f \) can be defined as a univalent harmonic mapping in a small disk around \(z \). It follows that \((\log f)_z(z) = f_z(z)/f(z) \neq 0 \) and therefore \(f_z(z) \neq 0 \).

(b) Suppose that \(f(z_0) = 0 \). Then by Lemma 2.2 and the univalence of \(f \) we have

\[
f(z) = (z - z_0)[z - z_0]^{2\beta} h(z) \cdot \overline{g(z)}, \quad z \in B(z_0, \rho) \subset D,
\]

where \(h \) and \(g \) are as in Lemma 2.2 and \(\text{Re} \beta > -\frac{1}{2} \). Therefore we have

\[
\lim_{z \to z_0} (z - z_0)f_z(z)/f(z) = 1 + \beta \neq 0. \tag{3.1}
\]

Lemma 3.3. Let \(f_0 \in \mathcal{H}(a_0, D) \) be univalent and \(\alpha \in \{ \alpha \in \mathbb{C}; \text{Re} \{ \alpha \} > -\frac{1}{2} \} \). Then \(f = f_0 \cdot |f_0|^{2\alpha} \) is univalent and belongs to \(\mathcal{H}(a, D) \) where

\[
a = \frac{1 + \overline{\alpha}}{1 + \alpha} \left[\frac{a_0 + \overline{\alpha}/(1 + \alpha)}{1 + a_0\alpha/(1 + \alpha)} \right]
\]

satisfies (1.3).
Proof. Direct calculations show that $\bar{f}_z = a(\bar{f}/f)f_z$ in D. Since $\text{Re}\{\alpha\} > -\frac{1}{2}$ we have $|\bar{a}/(1 + \alpha)| < 1$ and therefore a satisfies (1.3). Next, f is not a constant since f_0 is not a constant and therefore $f \in \mathcal{F}(a, D)$. The univalence of f follows from the fact that $w|w|^2a$, $\text{Re}\alpha > -\frac{1}{2}$, is univalent in C. ■

In our next result we consider univalent solutions in $\mathcal{F}(a, C)$. By Liouville's Theorem we know that $a(z) \equiv a \in U$.

Theorem 3.4. A function $f \in \mathcal{F}(a, C)$ is univalent in C if and only if

$$f(z) = \text{const}(z - z_0)|z - z_0|^2\beta; \quad \beta = \bar{a}(1 + a)/(1 - |a|^2)$$

and $z_0 \in C$.

Proof. Let f be of the form (3.2). In Lemma 3.2 put $D = C$, $f_0(z) = (z - z_0)$, $a_0(z) = 0$, and $\alpha = \beta$. Then we get that $f \in \mathcal{F}(\beta/(1 + \beta), C)$ and is univalent in C. Conversely, let f be univalent and in $\mathcal{F}(a, C)$, $a(z) \equiv a \in U$. Put $f = |f|^{-2\beta}/(1 + \beta)$. Then by Lemma 3.3 \hat{f} is an entire univalent function and therefore $\hat{f}(z) = \text{const}(z - z_0)$. Solving for f we get that $f = \text{const}(z - z_0)|z - z_0|^{2\beta}$, $\beta = \bar{a}(1 + a)/(1 - |a|^2)$. ■

Let now D be a simply connected domain of C, $D \neq C$, and $f \in \mathcal{F}(a, D)$. If $0 \not\in f(D)$, then $\log f$ can be defined as a univalent harmonic mapping on D. Since such mappings have been extensively studied [1-4], we assume that $0 \in f(D)$. Denote by ϕ a conformal mapping from the unit disk U onto D. If $f \in \mathcal{F}(a, D)$ then $f \circ \phi \in \mathcal{F}(\bar{a}, U)$ where $\bar{a} = a \circ \phi$. Therefore we may assume that $D = U$ and $f(0) = 0$. Furthermore, by applying the postmapping $cw|w|^2a$, $\alpha = -a(0)/(1 + a(0))$ and c an appropriate constant, we may assume that $a(0) = 0$ and $f_z(0) = 1$. We then denote

$$S_M = \bigcup_{a \in A} \{ f \text{ univalent in } \mathcal{F}(a, U); f(0) = 0, f_z(0) = 1 \},$$

where A denotes the set of all functions $a \in H(U)$ such that $a(U) \subset U$ and $a(0) = 0$. As a direct consequence of Theorem 2.3 we get that

$$S_M = \{ f = z \cdot h \cdot \bar{g} \in H \cdot \bar{H}(U); f \text{ univalent and } h(0) = g(0) = 1 \}.$$

Our first result concerning S_M is

Theorem 3.5. S_M is compact in the topology of normal convergence.

Proof. Let $f_n, n \in \mathbb{N}$, be in S_M. Then by considering an appropriate subsequence of $\{f_n\}_{n=-1}^{\infty}$ we may assume that the corresponding $\{a_n\}_{n=-1}^{\infty}$ converges to some function a in A. By Schwarz' Lemma for a_n we know that each f_n is a K_r-quasiconformal mapping in rU for all $r < 1$. By a well-known result on quasiconformal mappings we know that f_n converges normally in rU to a K_r-quasiconformal function $f \in \mathcal{F}(a, rU)$ for all $r < 1$. Therefore f is in S_M. ■

The following lemmas are needed later on.

Lemma 3.6. For $f \in S_M$ we have

$$1/16 \leq \text{dist}(0, \partial f(U)) \leq 1.$$
PROOF. Since \(a(0) = 0 \) we have \(|f_z(z)| \leq |z||f_z(z)| \) for all \(z \in U \) and from (3.3) we deduce that \(f(z) = z + O(|z|^2) \) near zero. By Lemma 3.3 in [3] we conclude that

\[
|f(z)| \geq |z|/4(1 + |z|^2)
\]

for all \(z \in U \). In particular the disk \(\{ w; |w| < 1/16 \} \) is in \(f(U) \).

On the other hand

\[
\text{dist}(0, \partial f(U)) = \lim_{|z| \to 1} |f(z)| = \lim_{|z| \to 1} |h(z)g(z)| \leq |h(0)g(0)| = 1.
\]

Lemma 3.7. Let \(f = zhg \) be in \(SM \). Then \(s = zh/g \) is locally univalent in \(U \).

PROOF. By Lemma 3.2 we know that \(zf_z/f \) is a nonvanishing function in \(H(U) \). Since \(zs'/s = (1 - a)zf_z/f \) for some \(a \in A \), \(zs'/s \) does not vanish in \(U \). But \(s'(0) = 1 \); therefore \(O \notin s'(U) \) and the result follows.

4. Mapping theorem. In this section we look for an analogue of the Riemann Mapping Theorem. Let \(\Omega \neq C \) be a simply connected domain in \(C \) and let \(a \in H(U) \), \(a(U) \subset U \) be given. Fix a \(z_0 \in U \) and \(w_0 \in \Omega \). We are interested in the existence of a univalent function \(f \in \mathcal{F}(a, U) \), \(f(U) = \Omega \), normalized by \(f(z_0) = w_0 \) and \(f_z(z_0) > 0 \). Let us start with an example which will show that this problem is not solvable in general.

Suppose that we want to find a univalent mapping \(f \in \mathcal{F}(-z, U) \) normalized by \(f(0) = 0 \) and \(f_z(0) > 0 \) such that \(f \) maps \(U \) onto \(\Omega = \mathbb{C}\setminus(-\infty, -1] \). Assume that such a function exists. Then \(f = zhg \equiv s|g|^2 \in H\cdot\overline{H}(U) \), \(s'(0) > 0 \), and \(g(0) = 1 \). Furthermore, we have

(i) \(s \in H(U) \) and \(s \) is locally univalent in \(U \) (Lemma 3.6), and
(ii) \(\arg f/z = \arg s/z \) is a bounded harmonic function on \(U \).

We will show that \(s(z)/s'(0) = k(z) = z/(1 - z)^2 \). First, observe that \(s \) is univalent in \(U \). Indeed, \(s \circ f^{-1}(w) = w/|g \circ f^{-1}(w)|^2 = w \cdot p(w) \), where \(p(w) > 0 \) on \(f(U) \), is a continuous locally univalent function in \(f(U) \) and therefore maps each radial line segment \(\{ w = Re^{it}, 0 \leq R < R_0 \} \) in \(f(U) \) injectively onto \(\{ w = \rho e^{it}, 0 \leq \rho < \rho_0 \leq \infty \} \). Since \(f(U) \) is a starlike domain with respect to the origin, we conclude that \(s \circ f^{-1} \) is univalent to \(f(U) \). Hence \(s \) is univalent in \(U \). Now \(\lim_{r \to 1}s(re^{it}) = s(e^{it}) \) exists almost everywhere on \(\partial U \) and by (ii) we know that \(s(e^{it}) \) lies on the negative real axis almost everywhere. Therefore \(s(z)/s'(0) = k(z) \).

Next, we shall determine the function \(g \) such that \(f \in \mathcal{F}(-z, U) \). We need to solve

\[
(4.1) \quad f_z/f = g'/g = -zf_z/f = -zk'/k = zg'/g, \quad g(0) = 1.
\]

The unique solution of (4.1) is \(g(z) = (1 - z) \) and therefore we get that

\[
(4.2) \quad f = \text{const} z(1 - \bar{z})/(1 - z).
\]

Observe that \(f \) is univalent in \(U \), but maps \(U \) onto a disk and not \(\Omega \). In other words, there is no univalent mapping in \(\mathcal{F}(-z, U) \) such that \(f(0) = 0 \), \(f_z(0) > 0 \), and \(f(U) = \Omega \). However, we have the following Mapping Theorem.
Theorem 4.1. Let \(\Omega \) be a bounded simply connected domain of \(\mathbb{C} \) whose boundary is locally connected. Fix \(0 \in \Omega \) and let \(a \in H(U) \) such that \(a(U) \subset U \) be given. Then there is a univalent function \(f \in \mathcal{F}(a, \Omega) \) having the following properties:

(i) \(f(U) \subset \Omega \), normalized at the origin by \(f(z) = cz|z|^{2\beta}(1 + o(1)), \) where \(\beta = a(0)(1 + a(0))/(1 - |a(0)|^2) \) and \(c > 0 \).

(ii) \(\lim_{z \to e^it} f(z) = \hat{f}(e^{it}) \) exists and is in \(\partial \Omega \) for all \(t \in \partial U \setminus E \), where \(E \) is a countable set.

(iii) For each \(e^{it_0} \in \partial U \), we have that

\[
\begin{align*}
\hat{f}_{\ast}(e^{it_0}) &= \text{ess lim}_{t \uparrow t_0} \hat{f}(e^{it}) \quad \text{and} \quad f_{\ast}(e^{it_0}) = \text{ess lim}_{t \downarrow t_0} \hat{f}(e^{it})
\end{align*}
\]

exist and are in \(\partial \Omega \).

(iv) For \(e^{it_0} \in E \), the cluster set of \(f \) at \(e^{it_0} \) lies on a helix joining the point \(f_{\ast}(e^{it_0}) \) to the point \(\hat{f}_{\ast}(e^{it_0}) \).

Remarks. (1) If \(a(0) = m/1 + m, m \in \mathbb{N} \cup \{0\} \), then \(f \) is in \(H \cdot \overline{H}(U) \).

(2) In the case where \(||a|| = \sup_{z \in U} |a(z)| < 1 \), properties (i) and (ii) imply that \(f(U) = \Omega \).

(3) If \(e^{it_0} \in E \) and \(f_{\ast}(e^{it_0}) = f_{\ast}(e^{it_0}) = B \), then there are infinitely many helices joining \(A \) and \(B \). Our claim is that the cluster set of \(f \) at \(e^{it_0} \) lies on one of them. Thus, for example, the cluster set of

\[
f(z) = \frac{z(1 - \bar{z})}{(1 - z)} \exp\left(-2 \text{arg}\left(\frac{1 - iz}{1 - z}\right)\right)
\]

at \(z = 1 \) lies on the helix \(\gamma(\tau) = \exp[-\tau + i(\pi/2 + \tau)] \) joining the points \(f_{\ast}(1) = -e^{-\pi/2} \) and \(f_{\ast}(1) = -e^{3\pi/2} \), whereas the cluster set of \(f \) at \(z = -i \) is the straight line segment from \(f_{\ast}(-i) = -e^{-\pi/2} \) to \(f_{\ast}(-i) = -e^{3\pi/2} \).

Proof. Assume first that \(a(0) = 0 \). Let \(\phi \) be the conformal mapping from \(U \) onto \(\Omega \) normalized by \(\phi(0) = 0, \phi'(0) > 0 \). Denote by \(\Omega_n = \{ w = \phi(z); |z| < r_n \} \), \(r_n = n/(n + 1), n \in \mathbb{N} \). Then, there exists a univalent function \(f_n \in \mathcal{F}(a_n \equiv a(r_n z), U) \), mapping \(U \) onto \(\Omega_n \) such that \(f_n(0) = 0 \) and \((f_n)_{\ast}(0) > 0 \). Indeed, consider \(F_n = (1/r_n)\phi^{-1} \circ f_n \). Then \(F_n \) has to satisfy the nonlinear elliptic equation

\[
(F_n)_{z} = a_n \int f \cdot \frac{\phi' \circ F_n}{\phi' \circ F_n} \cdot (F_n)_{z}; \quad F(0) = 0, \quad (F_n)_{z}(0) > 0
\]

and map \(U \) onto \(U \) univalently. This has a solution (see for example the proof of Theorem 5.1 in [4]) and therefore the existence of \(f_n \) follows. Next, we show the existence of a mapping \(f \) having the properties of the theorem.

Since \(\Omega \) is bounded, then by applying the diagonal procedure on the exhaustion of \(U \), we conclude that there is a subsequence \(f_{n_k} \) which converges normally to a function \(f \) satisfying (1.2) with the given \(a \in A \) and \(f(0) = 0 \). By Lemma 3.6, we have

\[
dist(0, \partial \Omega_1) \leq (f_n)_{z}(0) \leq 16 \dist(0, \partial \Omega).
\]
Therefore \(f_\ast(0) > 0 \) and \(f \) is univalent. Furthermore, by the argument principle for quasiconformal mappings we have that \(f(U) \subset \Omega \). Now, since each prime end of \(\partial \Omega \) is singleton, \(\phi \) has a uniformly continuous extension to \(\overline{U} \) and \(0 \notin \phi(\partial U) \). Observe that the branch of \(\log(\phi/z) \), \(\log(\phi')(0) \in \mathbb{R} \), is harmonic in \(U \) and continuous on \(\overline{U} \). Therefore \(\log(\phi/z) \) is bounded in \(\overline{U} \). Likewise we claim that the branch of \(g = \log(f/z) \), \(\Im g(0) = 0 \) is bounded in \(\overline{U} \). To see this, let \(g_n = \log(f_n/z) \), \(\Im g_n(0) = 0 \) be defined as continuous harmonic functions in \(U \). We shall show that \(g_n \) are uniformly bounded. Indeed, each \(f_n \) is a \(K_{r_n} \)-quasiconformal mapping on \(U \) with \(K_{r_n} = (1 + r_n)/(1 - r_n) \) and \(f_n(U) = \Omega_n \) is bounded by an analytic Jordan curve. Hence \(f_n \) has a continuous univalent extension to \(\overline{U} \) and therefore \(g_n \) admits a continuous extension to \(\overline{U} \). Evidently \(\Re g_n = \log|f_n/z| \) are uniformly bounded since \(\Omega_n \) are uniformly bounded. As of \(\Im g_n \), there are nondecreasing continuous functions \(\tau_n(t) \) defined on \(\mathbb{R} \) by

\[
\arg\left[f_n(e^{it})/e^{it} \right] = \arg\left[\phi(r_ne^{it\tau_n(t)})/e^{it\tau_n(t)} \right] + \tau_n(t) - t
\]

which satisfy \(\tau_n(t + 2\pi) = \tau_n(t) + 2\pi \) for all \(t \in \mathbb{R} \). Therefore there are \(k_n \in \mathbb{Z} \) such that

\[
|\tau_n(t) - t - 2k_n\pi| \leq 2\pi
\]

or

\[
2(|k_n| - 1)\pi \leq |\tau_n(t) - t| \leq 2(|k_n| + 1)\pi.
\]

On the other hand, \(\int_0^{2\pi} \arg[f_n(e^{it})/e^{it}] \, dt = 0 \), which implies that there is a \(t_n \) such that \(f_n(e^{it_n})e^{-it_n} > 0 \) and therefore

\[
2(|k_n| - 1)\pi \leq |\tau_n(t_n) - t_n| = |\arg\left[\phi(r_ne^{it\tau_n(t_n)})/e^{it\tau_n(t_n)} \right]|
\]

\[
\leq 2(|k_n| + 1)\pi.
\]

But \(\sup_{|z|=1} |\arg(\phi(z)/z)| = M < \infty \) implies that \(|k_n| \leq 1 + M/2\pi \). Finally from (4.3) and (4.4) we get that

\[
\Im g_n(z) = \arg\left[f_n(z)/z \right] \leq 2M + 4\pi.
\]

This concludes the proof of our claim.

Now, \(\lim_{r \to 1} \log f(re^{it})/re^{it} \) and therefore \(\tilde{f}(e^{it}) = \lim_{r \to 1} f(re^{it}) \) exists almost everywhere. In fact \(\tilde{f}(e^{it}) \subset \partial \Omega \), since \(f_n \) is quasiconformal on \(U \) and therefore extends to a homeomorphism from \(\overline{U} \) onto \(\overline{\Omega}_n \). Fix \(\varepsilon, 0 < \varepsilon < 1 \), and consider a finite covering \(\bigcup_1 B(e^{it}, \varepsilon) \) of \(\partial U \). Let \(\gamma_j \) be a conformal mapping from \(U \) onto \(C_j = U \cap B(e^{it}, \varepsilon) \). Then \(0 \notin f(B(e^{it}, \varepsilon)) \) and therefore \(F_j = \log f \circ \gamma_j \) can be defined as a univalent harmonic function from \(U \) onto \(K_j \subset \Omega \). By Theorem 3.5 in [4] we conclude that except for at most a countable set \(E_j \) the unrestricted limit \(\tilde{F}_j(e^{it}) = \lim_{z \to e^{it}} F_j(z) \) exists, is continuous and belongs to \(K_j \). Let \(E = \bigcup_j E_j \); then since each \(\gamma_j \) can be extended to a homeomorphism to \(\overline{U} \) we conclude that \(\tilde{f}(e^{it}) = \lim_{z \to e^{it}} f(z) \) exists, is continuous, and belongs to \(\partial \Omega \) for \(e^{it} \in \partial U \setminus E \). By the same theorem, at the points \(e^{i\theta} \) of \(E \), the one-sided essential limits of \(\log \tilde{f}(e^{i\theta}) \) exist, are different, and belong to \(\partial \Omega \); and finally, the cluster set at \(e^{i\theta} \) of \(E \) is a straight line.
segment joining \((\log \hat{f})^*(e^{i\theta})\) and \((\log \hat{f})^*(e^{i\theta})\). Therefore \(A_0 = \hat{f}(e^{i\theta})\) and \(B_0 = \hat{f}(e^{i\theta})\) exist and belong to \(\partial \Omega\) for \(e^{i\theta} \in E\). The cluster set of \(f\) at such a point lies on a single helix \(\exp(\lambda \log A_0 + (1 - \lambda)\log B_0), 0 < \lambda < 1\), joining \(A_0\) and \(B_0\) (depending on the corresponding values of \(\log A_0\) and \(\log B_0\)). If for some point \(e^{i\theta} \in E\), \(\hat{f}^*(e^{i\theta}) = \hat{f}(e^{i\theta})\), then \(\log A_0 = \log B_0 + 2\pi i\) and therefore the cluster set of \(f\) at \(e^{i\theta}\) is \(B_0\exp[(1 - \lambda)2\pi i], 0 < \lambda < 1\), i.e., a circle centered at the origin of radius \(|f^*(e^{i\theta})|\).

To remove the assumption \(a(0) = 0\), we apply what has been proved to the domain

\[
\tilde{D} = \{ w|w|^{2(\overline{a(0)}/(1 + a(0))}; w \in D \}
\]

with

\[
\tilde{a}(z) = (a(z) - a(0))/(1 - \overline{a(0)} a(z))
\]

to obtain a mapping \(\tilde{f}: U \rightarrow \tilde{D}\). Then

\[
f = \tilde{f} \cdot f \cdot 2a(0)(1 + a(0))/(1 - |a(0)|^2)
\]

will be the desired solution. ■

References

Department of Mathematics, University of Montreal, Quebec, Canada

Department of Mathematics, Laval University, Quebec, Canada (Current address of Z. Abdulhadi)

Current address (D. Bshouty): Technion-Israel Institute of Technology, Haifa 3200, Israel.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use