Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Elliptic and parabolic BMO and Harnack's inequality


Author: Hugo Aimar
Journal: Trans. Amer. Math. Soc. 306 (1988), 265-276
MSC: Primary 35B05; Secondary 35Jxx, 35Kxx, 42B99
DOI: https://doi.org/10.1090/S0002-9947-1988-0927690-8
MathSciNet review: 927690
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a generalization of the John-Nirenberg lemma which can be applied to prove $ {A_2}$ type conditions for small powers of positive solutions of elliptic and parabolic, degenerate and nondegenerate operators.


References [Enhancements On Off] (What's this?)

  • [B] E. Bombieri, Theory of minimal surfaces and a counter-example to the Bernstein conjecture in high dimensions, Lecture Notes, Courant Institute, New York Univ., 1970.
  • [Bu] N. Burguer, Espace des fonctions a variation moyenne bornee sur un espace de nature homogene, C. R. Acad. Sci. Paris Ser. A 286 (1978), 139-142. MR 0467176 (57:7041)
  • [CS$ _{1}$] F. Chiarenza and R. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), 719-749. MR 748366 (86c:35082)
  • [CS$ _{2}$] -, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. 87 (1984), 139-162. MR 772255 (87b:35091)
  • [CW] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., Vol. 242, Springer-Verlag, Berlin and New York, 1972. MR 0499948 (58:17690)
  • [FG] E. Fabes and N. Garofalo, Parabolic B.M.O. and Harnack's inequality, Proc. Amer. Math. Soc. 95 (1985), 63-69. MR 796447 (87f:35114)
  • [FKS] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982). MR 643158 (84i:35070)
  • [FL] B. Franchi and E. Lanconelli; Holder regularity theorem for a class of linear non uniformly elliptic operators with measurable coefficients Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 523-541. MR 753153 (85k:35094)
  • [FS] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Università Degli Studi di Trento, Italy, U.T.M. 195, 1986, pp. 1-57. MR 963489 (90e:35076)
  • [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • [M1] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 0159138 (28:2356)
  • [M2] -, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134; Correction to "A Harnack inequality for parabolic differential equations", Comm. Pure Appl. Math. 20 (1967), 232-236. MR 0159139 (28:2357)
  • [M3] -, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727-740. MR 0288405 (44:5603)
  • [MS] R. Macias and C. Segovia, A well-behaved quasi-distance for spaces of homogeneous type, Trabajos de Matematica, Vol. 32, Inst. Argentino Mat., 1981, pp. 1-18.
  • [MW] B. Muckenhoupt and R. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1976), 221-237. MR 0399741 (53:3583)
  • [N] U. Neri, Some properties of functions with bounded mean oscillation, Studia Math. 61 (1977), 63-75. MR 0445210 (56:3554)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B05, 35Jxx, 35Kxx, 42B99

Retrieve articles in all journals with MSC: 35B05, 35Jxx, 35Kxx, 42B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0927690-8
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society