Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A truncated Gauss-Kuzmin law


Author: Doug Hensley
Journal: Trans. Amer. Math. Soc. 306 (1988), 307-327
MSC: Primary 11K36; Secondary 11A55, 11H41
DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
MathSciNet review: 927693
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The transformations $ {T_n}$ which map $ x \in [0,\,1)$ onto 0 (if $ x \leqslant 1/(n + 1)$), and to $ \{ 1/x\} $ otherwise, are truncated versions of the continued fraction transformation $ T:x \to \{ 1/x\} $ (but $ 0 \to 0$).

An analog to the Gauss-Kuzmin result is obtained for these $ {T_n}$, and is used to show that the Lebesgue measure of $ T_n^{ - k}\{ 0\} $ approaches $ 1$ exponentially. From this fact is obtained a new proof that the ratios $ \nu /k$, where $ \nu $ denotes any solution of $ {\nu ^2} \equiv - 1\bmod k$, are uniformly distributed $ \bmod 1$ in the sense of Weyl.


References [Enhancements On Off] (What's this?)

  • [1] E. Hecke, Eine neu Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), 11-51. MR 1544392
  • [2] C. Hooley, On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963), 97-114. MR 0153648 (27:3610)
  • [3] -, On the distribution of the roots of polynomial congruences, Mathematika 11 (1964), 39-49. MR 0163874 (29:1173)
  • [4] H. Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), 171-188. MR 0485740 (58:5553)
  • [5] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, 1974. MR 0419394 (54:7415)
  • [6] E. Landau, Vorlesungen über Zahlentheorie, Chelsea, 1969.
  • [7] O. Perron, Die Lehre Von den Kettenbrüchen, Chelsea, 1950. MR 0037384 (12:254b)
  • [8] F. Schweiger, The metrical theory of Jacobi-Perron algorithm, Lecture Notes in Math., vol. 334, Springer-Verlag, 1973. MR 0345925 (49:10654)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11K36, 11A55, 11H41

Retrieve articles in all journals with MSC: 11K36, 11A55, 11H41


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0927693-3
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society