Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ k$-flat structures and exotic characteristic classes

Author: Lisa R. Goldberg
Journal: Trans. Amer. Math. Soc. 306 (1988), 433-453
MSC: Primary 57R32; Secondary 57R20
MathSciNet review: 933300
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize the concept of "foliation" and define $ k$-flat structures; these are smooth vector bundles with affine connections whose characteristic forms vanish above a certain dimension. Using semisimplicial techniques we construct a classifying space for $ k$-flat structures, and prove a classification theorem for these structures on smooth manifolds.

Techniques from rational homotopy theory are used to relate the exotic characteristic classes of foliations to the rational homotopy groups and cohomology of the classifying space.

References [Enhancements On Off] (What's this?)

  • [1] Raoul Bott, Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971) Springer, Berlin, 1972, pp. 1–94. Lecture Notes in Math., Vol. 279. Notes by Lawrence Conlon, with two appendices by J. Stasheff. MR 0362335
  • [2] Raoul Bott, On a topological obstruction to integrability, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 127–131. MR 0266248
  • [3] Raoul Bott and James Heitsch, A remark on the integral cohomology of 𝐵Γ_{𝑞}, Topology 11 (1972), 141–146. MR 0293661
  • [4] A. K. Bousfield and V. K. A. M. Gugenheim, On 𝑃𝐿 de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 0425956
  • [5] A. Haefliger, Lectures on the theorem of Gromov, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Springer, Berlin, 1971, pp. 128–141. Lecture Notes in Math., Vol. 209. MR 0334241
  • [6] Steven E. Hurder, Dual homotopy invariants of 𝐺-foliations, Topology 20 (1981), no. 4, 365–387. MR 617372, 10.1016/0040-9383(81)90020-3
  • [7] John N. Mather, Integrability in codimension 1, Comment. Math. Helv. 48 (1973), 195–233. MR 0356085
  • [8] Peter May, Simplicial objects in algebraic topology, Van Nostrand, 1969.
  • [9] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
  • [10] C. P. Rourke and B. J. Sanderson, Δ-sets. I. Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1971), 321–338. MR 0300281
  • [11] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 0646078
  • [12] William Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv. 49 (1974), 214–231. MR 0370619
  • [13] W. P. Thurston, Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), no. 2, 249–268. MR 0425985
  • [14] James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1963. MR 0163320

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R32, 57R20

Retrieve articles in all journals with MSC: 57R32, 57R20

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society