Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups
HTML articles powered by AMS MathViewer

by Diego Benardete PDF
Trans. Amer. Math. Soc. 306 (1988), 499-527 Request permission

Abstract:

Let $\Gamma$ and $\Gamma ’$ be lattices, and $\phi$ and $\phi ’$ one-parameter subgroups of the connected Lie groups $G$ and $G’$. If one of the following conditions (a), (b), or (c) hold, Theorem A states that if the induced flows on the homogeneous spaces $G/\Gamma$ and $G’ /\Gamma ’$ are topologically equivalent, then they are topologically equivalent by an affine map. (a) $G$ and $G’$ are one-connected and nilpotent. (b) $G$ and $G’$ are one-connected and solvable, and for all $X$ in $L(G)$ and $X’$ in $L(G’ )$, $\operatorname {ad} (x)$ and $\operatorname {ad} (X’ )$ have only real eigenvalues, (c) $G$ and $G’$ are centerless and semisimple with no compact direct factor and no direct factor $H$ isomorphic to $\operatorname {PSL} (2, R)$ such that $\Gamma H$ is closed in $G$. Moreover, in condition (c), the induced flow of $\phi$ on $G/\Gamma$ is assumed to be ergodic. Theorem A depends on Theorem B, which concerns divergence properties of one-parameter subgroups. We say $\phi$ is isolated if and only if for any $\phi ’$ which recurrently approaches $\phi$ for positive and negative time, $\phi$ equals $\phi ’$ up to sense-preserving reparameterization. Theorem B(a) states that if $G$ is one-connected and nilpotent, or one-connected and solvable with exp: $L(G) \to G$ a diffeomrophism, then every $\phi$ of $G$ is isolated. Let $G$ be connected and semisimple and $\phi (t) = \exp (tX)$. Then Theorem B(b) states that $\phi$ is isolated, if $[X, Y] = 0$ and $\operatorname {ad} (Y)$ being semisimple imply that $\operatorname {ad} (Y)$ has some eigenvalue not pure imaginary and not zero. If $G$ has finite center, $\phi$ is isolated if there is no compact connected subgroup in the centralizer of $\phi$.
References
  • D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
  • L. Auslander, An exposition of the structure of solv-manifolds. I, II, Bull. Amer. Math. Soc. 79 (1973), 227-261, 262-285. L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Princeton Univ. Press, Princeton, N. J., 1963.
  • Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
  • Jonathan Brezin and Calvin C. Moore, Flows on homogeneous spaces: a new look, Amer. J. Math. 103 (1981), no. 3, 571–613. MR 618325, DOI 10.2307/2374105
  • Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
  • I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
  • S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis, Invent. Math. 51 (1979), no. 3, 239–260. MR 530631, DOI 10.1007/BF01389917
  • David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371. MR 670741, DOI 10.1016/0040-9383(82)90017-9
  • V. V. Gorbacevič, Lattices in Lie groups of type $(E)$ and $(R)$, Vestnik Moskov. Univ. Ser. I Mat. Meh. 30 (1975), no. 6, 56–63 (Russian, with English summary). MR 0427540
  • M. Gromov, Three remarks on geometric dynamics and fundamental groups, preprint.
  • Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
  • M. C. Irwin, Smooth dynamical systems, Pure and Applied Mathematics, vol. 94, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 586942
  • A. I. Mal′cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
  • Brian Marcus, Topological conjugacy of horocycle flows, Amer. J. Math. 105 (1983), no. 3, 623–632. MR 704217, DOI 10.2307/2374316
  • G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 371–553. MR 0422499
  • William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
  • M. V. Milovanov, The extension of automorphisms of uniform discrete subgroups of solvable Lie groups, Dokl. Akad. Nauk BSSR 17 (1973), 892–895, 969 (Russian). MR 0349902
  • Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
  • R. Mosak and M. Moskowitz, Analytic density of subgroups of cofinite volume, preprint.
  • G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
  • William Parry, Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819–828. MR 284567, DOI 10.2307/2373472
  • K. Petersen, Ergodic theory, Cambridge Univ. Press, Cambridge, 1983.
  • Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
  • M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
  • Marina Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), no. 3, 597–614. MR 657240, DOI 10.2307/2007014
  • —, Ergodic theory in hyperbolic space, preprint.
  • Masahiko Saito, Sur certains groupes de Lie résolubles, Sci. Papers College Gen. Ed. Univ. Tokyo 7 (1957), 1–11 (French). MR 97462
  • V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
  • Peter Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970), 327–333. MR 414830, DOI 10.1007/BF01704076
  • Dave Witte, Rigidity of some translations on homogeneous spaces, Invent. Math. 81 (1985), no. 1, 1–27. MR 796188, DOI 10.1007/BF01388769
  • Scott Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2) 109 (1979), no. 2, 323–351. MR 528966, DOI 10.2307/1971114
  • Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F25, 22E40, 58F10
  • Retrieve articles in all journals with MSC: 58F25, 22E40, 58F10
Additional Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 306 (1988), 499-527
  • MSC: Primary 58F25; Secondary 22E40, 58F10
  • DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
  • MathSciNet review: 933304