Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups


Author: Diego Benardete
Journal: Trans. Amer. Math. Soc. 306 (1988), 499-527
MSC: Primary 58F25; Secondary 22E40, 58F10
DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
MathSciNet review: 933304
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma $ and $ \Gamma ' $ be lattices, and $ \phi $ and $ \phi ' $ one-parameter subgroups of the connected Lie groups $ G$ and $ G' $. If one of the following conditions (a), (b), or (c) hold, Theorem A states that if the induced flows on the homogeneous spaces $ G/\Gamma $ and $ G' /\Gamma ' $ are topologically equivalent, then they are topologically equivalent by an affine map. (a) $ G$ and $ G' $ are one-connected and nilpotent. (b) $ G$ and $ G' $ are one-connected and solvable, and for all $ X$ in $ L(G)$ and $ X' $ in $ L(G' )$, $ \operatorname{ad} (x)$ and $ \operatorname{ad} (X' )$ have only real eigenvalues, (c) $ G$ and $ G' $ are centerless and semisimple with no compact direct factor and no direct factor $ H$ isomorphic to $ \operatorname{PSL} (2,\,R)$ such that $ \Gamma H$ is closed in $ G$. Moreover, in condition (c), the induced flow of $ \phi $ on $ G/\Gamma $ is assumed to be ergodic.

Theorem A depends on Theorem B, which concerns divergence properties of one-parameter subgroups. We say $ \phi $ is isolated if and only if for any $ \phi ' $ which recurrently approaches $ \phi $ for positive and negative time, $ \phi $ equals $ \phi ' $ up to sense-preserving reparameterization. Theorem B(a) states that if $ G$ is one-connected and nilpotent, or one-connected and solvable with exp: $ L(G) \to G$ a diffeomrophism, then every $ \phi $ of $ G$ is isolated. Let $ G$ be connected and semisimple and $ \phi (t) = \exp (tX)$. Then Theorem B(b) states that $ \phi $ is isolated, if $ [X,\,Y] = 0$ and $ \operatorname{ad} (Y)$ being semisimple imply that $ \operatorname{ad} (Y)$ has some eigenvalue not pure imaginary and not zero. If $ G$ has finite center, $ \phi $ is isolated if there is no compact connected subgroup in the centralizer of $ \phi $.


References [Enhancements On Off] (What's this?)

  • [1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. No. 90 (1967), Amer. Math. Soc., Providence, R.I., 1969. MR 0224110 (36:7157)
  • [2] L. Auslander, An exposition of the structure of solv-manifolds. I, II, Bull. Amer. Math. Soc. 79 (1973), 227-261, 262-285.
  • [3] L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Princeton Univ. Press, Princeton, N. J., 1963.
  • [4] A. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983. MR 698777 (85d:22026)
  • [5] J. Brezin and C. C. Moore, Flows on homogeneous spaces: a new look, Amer. J. Math. 103 (1981), 571 613. MR 618325 (83e:22009)
  • [6] N. Bourbaki, Elements of mathematics, Lie groups and Lie algebras. I, Hermann, Paris, and Addison-Wesley, Reading, Mass., 1975. MR 682756 (84i:22001)
  • [7] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer-Verlag, 1982. MR 832433 (87f:28019)
  • [8] S. G. Dani, On invariant measures, minimal sets, and a lemma of Margulis, Invent. Math. 51 (1979), 239 260. MR 530631 (80d:58039)
  • [9] D. Fried, The geometry of cross sections to flows, Topology 21 (1982), 353-371. MR 670741 (84d:58068)
  • [10] V. V. Gorbacevic, Lattices in Lie groups of type $ (E)$ and $ (R)$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), 56-63; English transi., Moscow Univ. Math. Bull. 30 (1975), 98-104. MR 0427540 (55:571)
  • [11] M. Gromov, Three remarks on geometric dynamics and fundamental groups, preprint.
  • [12] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [13] M. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, Academic Press, New York, 1974. MR 0486784 (58:6484)
  • [14] M. C. Irwin, Smooth dynamical systems, Academic Press, New York, 1980. MR 586942 (82c:58018)
  • [15] A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32; English transi., Amer. Math. Soc. Transi. (1) 9 (1962), 276-307. MR 0028842 (10:507d)
  • [16] B. Marcus, Topological conjugacy of horocycle flows, Amer. J. Math. 105 (1983), 623-632. MR 704217 (85b:58103)
  • [17] G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, Lie Groups and Their Representations (I. M. Gelfand, ed.), Wiley, New York, 1975. MR 0422499 (54:10486)
  • [18] W. Massey, Algebraic topology: An introduction, Harcourt, Brace, & World, New York, 1967. MR 0211390 (35:2271)
  • [19] M. V. Milovanov, On the extension of automorphisms of uniform discrete subgroups of solvable Lie groups, Dokl. Akad. Nauk BSSR 17 (1973), 892-895. MR 0349902 (50:2395)
  • [20] C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178. MR 0193188 (33:1409)
  • [21] R. Mosak and M. Moskowitz, Analytic density of subgroups of cofinite volume, preprint.
  • [22] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N. J., 1973. MR 0385004 (52:5874)
  • [23] W. Parry, Metric classification of ergodic nilflows, Amer. J. Math. 93 (1971), 819-829. MR 0284567 (44:1792)
  • [24] K. Petersen, Ergodic theory, Cambridge Univ. Press, Cambridge, 1983.
  • [25] G. Prasad, Strong rigidity of $ Q$-rank 1 lattices, Invent. Math. 21 (1973), 255-286. MR 0385005 (52:5875)
  • [26] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972. MR 0507234 (58:22394a)
  • [27] M. Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), 597-614. MR 657240 (84e:58062)
  • [28] -, Ergodic theory in hyperbolic space, preprint.
  • [29] M. Saito, Sur certains groupes de Lie resolubles, Sci. Papers of the College of General Education, Univ. of Tokyo, Vol. 7, 1957, pp. 1-11 and 157-168. MR 0097462 (20:3931)
  • [30] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, 1984. MR 746308 (85e:22001)
  • [31] P. Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970), 322-326. MR 0414830 (54:2922)
  • [32] D. Witte, Rigidity of some translations on homogeneous spaces, Invent. Math. 81 (1985), 1-27. MR 796188 (87d:22018)
  • [33] S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2) 109 (1979), 323-351. MR 528966 (80j:58067)
  • [34] R. J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser, Boston, Mass., 1984. MR 776417 (86j:22014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F25, 22E40, 58F10

Retrieve articles in all journals with MSC: 58F25, 22E40, 58F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0933304-3
Keywords: Topological equivalence, flows, homogeneous space, one-parameter subgroups, Lie groups, discrete subgroups, lattice
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society