Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Finite-codimensional invariant subspaces of Bergman spaces


Authors: Sheldon Axler and Paul Bourdon
Journal: Trans. Amer. Math. Soc. 306 (1988), 805-817
MSC: Primary 46E15; Secondary 32A10, 32H20, 46J15, 47B38
DOI: https://doi.org/10.1090/S0002-9947-1988-0933319-5
MathSciNet review: 933319
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a large class of bounded domains in $ \mathbb{C}$, we describe those finite codimensional subspaces of the Bergman space that are invariant under multiplication by $ z$. Using different techniques for certain domains in $ {\mathbb{C}^N}$, we describe those finite codimensional subspaces of the Bergman space that are invariant under multiplication by all the coordinate functions.


References [Enhancements On Off] (What's this?)

  • [1] O. P. Agrawal, D. N. Clark, and R. G. Douglas, Invariant subspaces in the polydisk, Pacific J. Math. 121 (1986), 1-11. MR 815027 (87b:46055)
  • [2] P. R. Ahern and D. N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech. 19 (1970), 963-969. MR 0261340 (41:5955)
  • [3] Sheldon Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44. MR 671320 (84b:30052)
  • [4] Sheldon Axler, John B. Conway, and Gerard McDonald, Toeplitz operators on Bergman spaces, Canad. J. Math. 34 (1982), 466-483. MR 658979 (83i:47034)
  • [5] Hari Bercovici, A question on invariant subspaces of Bergman spaces, Proc. Amer. Math. Soc. (to appear). MR 947653 (89h:47006)
  • [6] -, The algebra of multiplication operators on Bergman spaces, Arch. Math. 48 (1987), 165-174. MR 878428 (88e:47057)
  • [7] Nicolas Bourbaki, General topology, Part 1, Addison-Wesley, Reading, Mass., 1966.
  • [8] Ralph Gellar, Cyclic vectors and parts of the spectrum of a weighted shift, Trans. Amer. Math. Soc. 146 (1969), 69-85. MR 0259642 (41:4277b)
  • [9] Per Lindberg, $ {L^p}$-approximation by analytic functions in an open region, Uppsala University (Sweden) Department of Mathematics Report No. 7, 1977.
  • [10] Allen L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, edited by C. Pearcy, Math. Surveys, no. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49-128. MR 0361899 (50:14341)
  • [11] Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241-269. MR 0252665 (40:5884)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E15, 32A10, 32H20, 46J15, 47B38

Retrieve articles in all journals with MSC: 46E15, 32A10, 32H20, 46J15, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0933319-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society