Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Tauberian theorems and stability of one-parameter semigroups


Authors: W. Arendt and C. J. K. Batty
Journal: Trans. Amer. Math. Soc. 306 (1988), 837-852
MSC: Primary 47D05; Secondary 34G10
MathSciNet review: 933321
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result is the following stability theorem: Let $ \mathcal{T} = {(T(t))_{t \geqslant 0}}$ be a bounded $ {C_0}$-semigroup on a reflexive space $ X$. Denote by $ A$ the generator of $ \mathcal{T}$ and by $ \sigma (A)$ the spectrum of $ A$. If $ \sigma (A) \cap i{\mathbf{R}}$ is countable and no eigenvalue of $ A$ lies on the imaginary axis, then $ {\lim _{t \to \infty }}T(t)x = 0$ for all $ x \in X$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05, 34G10

Retrieve articles in all journals with MSC: 47D05, 34G10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1988-0933321-3
PII: S 0002-9947(1988)0933321-3
Keywords: Tauberian theorems, $ {C_0}$-semigroup, stability, power bounded, Laplace transform, residual spectrum
Article copyright: © Copyright 1988 American Mathematical Society