Isometry groups of Riemannian solvmanifolds

Authors:
Carolyn S. Gordon and Edward N. Wilson

Journal:
Trans. Amer. Math. Soc. **307** (1988), 245-269

MSC:
Primary 53C30

MathSciNet review:
936815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simply connected solvable Lie group together with a left-invariant Riemannian metric is called a (simply connected) Riemannian solvmanifold. Two Riemannian solvmanifolds and may be isometric even when and are not isomorphic. This article addresses the problems of (i) finding the "nicest" realization of a given solvmanifold, (ii) describing the embedding of in the full isometry group , and (iii) testing whether two given solvmanifolds are isometric. The paper also classifies all connected transitive groups of isometries of symmetric spaces of noncompact type and partially describes the transitive subgroups of for arbitrary solvmanifolds .

**[Al1]**D. V. Alekseevskiĭ,*The conjugacy of polar decompositions of Lie groups*, Mat. Sb. (N.S.)**84 (126)**(1971), 14–26 (Russian). MR**0277662****[Al2]**D. V. Alekseevskiĭ,*Homogeneous Riemannian spaces of negative curvature*, Mat. Sb. (N.S.)**96(138)**(1975), 93–117, 168 (Russian). MR**0362145****[A-W1]**Robert Azencott and Edward N. Wilson,*Homogeneous manifolds with negative curvature. I*, Trans. Amer. Math. Soc.**215**(1976), 323–362. MR**0394507**, 10.1090/S0002-9947-1976-0394507-4**[A-W2]**Robert Azencott and Edward N. Wilson,*Homogeneous manifolds with negative curvature. II*, Mem. Amer. Math. Soc.**8**(1976), no. 178, iii+102. MR**0426002****[D]**E. D. Deloff,*Naturally reductive metrics and metrics with volume preserving geodesic symmetries on**algebras*, Thesis, Rutgers Univ., New Brunswick, N. J., 1979.**[G1]**Carolyn Gordon,*Riemannian isometry groups containing transitive reductive subgroups*, Math. Ann.**248**(1980), no. 2, 185–192. MR**573347**, 10.1007/BF01421956**[G2]**Carolyn Gordon,*Transitive Riemannian isometry groups with nilpotent radicals*, Ann. Inst. Fourier (Grenoble)**31**(1981), no. 2, vi, 193–204 (English, with French summary). MR**617247****[G-W1]**Carolyn S. Gordon and Edward N. Wilson,*Isospectral deformations of compact solvmanifolds*, J. Differential Geom.**19**(1984), no. 1, 241–256. MR**739790****[G-W2]**Carolyn S. Gordon and Edward N. Wilson,*The fine structure of transitive Riemannian isometry groups. I*, Trans. Amer. Math. Soc.**289**(1985), no. 1, 367–380. MR**779070**, 10.1090/S0002-9947-1985-0779070-3**[H]**Sigurdur Helgason,*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561****[Hu]**James E. Humphreys,*Introduction to Lie algebras and representation theory*, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR**0323842****[J]**Nathan Jacobson,*Lie algebras*, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR**0143793****[O-T]**Takushiro Ochiai and Tsunero Takahashi,*The group of isometries of a left invariant Riemannian metric on a Lie group*, Math. Ann.**223**(1976), no. 1, 91–96. MR**0412354****[On]**A. L. Oniscik,*Inclusion relations among transitive compact transformation groups*, Amer. Math. Soc. Transl. (2)**50**(1966), 5-58.**[Oz]**Hideki Ozeki,*On a transitive transformation group of a compact group manifold*, Osaka J. Math.**14**(1977), no. 3, 519–531. MR**0461377****[W]**Edward N. Wilson,*Isometry groups on homogeneous nilmanifolds*, Geom. Dedicata**12**(1982), no. 3, 337–346. MR**661539**, 10.1007/BF00147318

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C30

Retrieve articles in all journals with MSC: 53C30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0936815-X

Article copyright:
© Copyright 1988
American Mathematical Society